boost/function/function_template.hpp
// Boost.Function library
// Copyright Douglas Gregor 2001-2006. Use, modification and
// distribution is subject to the Boost Software License, Version
// 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// For more information, see http://www.boost.org
// Note: this header is a header template and must NOT have multiple-inclusion
// protection.
#include <boost/function/detail/prologue.hpp>
#define BOOST_FUNCTION_TEMPLATE_PARMS BOOST_PP_ENUM_PARAMS(BOOST_FUNCTION_NUM_ARGS, typename T)
#define BOOST_FUNCTION_TEMPLATE_ARGS BOOST_PP_ENUM_PARAMS(BOOST_FUNCTION_NUM_ARGS, T)
#define BOOST_FUNCTION_PARM(J,I,D) BOOST_PP_CAT(T,I) BOOST_PP_CAT(a,I)
#define BOOST_FUNCTION_PARMS BOOST_PP_ENUM(BOOST_FUNCTION_NUM_ARGS,BOOST_FUNCTION_PARM,BOOST_PP_EMPTY)
#define BOOST_FUNCTION_ARGS BOOST_PP_ENUM_PARAMS(BOOST_FUNCTION_NUM_ARGS, a)
#define BOOST_FUNCTION_ARG_TYPE(J,I,D) \
typedef BOOST_PP_CAT(T,I) BOOST_PP_CAT(BOOST_PP_CAT(arg, BOOST_PP_INC(I)),_type);
#define BOOST_FUNCTION_ARG_TYPES BOOST_PP_REPEAT(BOOST_FUNCTION_NUM_ARGS,BOOST_FUNCTION_ARG_TYPE,BOOST_PP_EMPTY)
// Type of the default allocator
#ifndef BOOST_NO_STD_ALLOCATOR
# define BOOST_FUNCTION_DEFAULT_ALLOCATOR std::allocator<function_base>
#else
# define BOOST_FUNCTION_DEFAULT_ALLOCATOR int
#endif // BOOST_NO_STD_ALLOCATOR
// Comma if nonzero number of arguments
#if BOOST_FUNCTION_NUM_ARGS == 0
# define BOOST_FUNCTION_COMMA
#else
# define BOOST_FUNCTION_COMMA ,
#endif // BOOST_FUNCTION_NUM_ARGS > 0
// Class names used in this version of the code
#define BOOST_FUNCTION_FUNCTION BOOST_JOIN(function,BOOST_FUNCTION_NUM_ARGS)
#define BOOST_FUNCTION_FUNCTION_INVOKER \
BOOST_JOIN(function_invoker,BOOST_FUNCTION_NUM_ARGS)
#define BOOST_FUNCTION_VOID_FUNCTION_INVOKER \
BOOST_JOIN(void_function_invoker,BOOST_FUNCTION_NUM_ARGS)
#define BOOST_FUNCTION_FUNCTION_OBJ_INVOKER \
BOOST_JOIN(function_obj_invoker,BOOST_FUNCTION_NUM_ARGS)
#define BOOST_FUNCTION_VOID_FUNCTION_OBJ_INVOKER \
BOOST_JOIN(void_function_obj_invoker,BOOST_FUNCTION_NUM_ARGS)
#define BOOST_FUNCTION_FUNCTION_REF_INVOKER \
BOOST_JOIN(function_ref_invoker,BOOST_FUNCTION_NUM_ARGS)
#define BOOST_FUNCTION_VOID_FUNCTION_REF_INVOKER \
BOOST_JOIN(void_function_ref_invoker,BOOST_FUNCTION_NUM_ARGS)
#define BOOST_FUNCTION_GET_FUNCTION_INVOKER \
BOOST_JOIN(get_function_invoker,BOOST_FUNCTION_NUM_ARGS)
#define BOOST_FUNCTION_GET_FUNCTION_OBJ_INVOKER \
BOOST_JOIN(get_function_obj_invoker,BOOST_FUNCTION_NUM_ARGS)
#define BOOST_FUNCTION_GET_FUNCTION_REF_INVOKER \
BOOST_JOIN(get_function_ref_invoker,BOOST_FUNCTION_NUM_ARGS)
#define BOOST_FUNCTION_VTABLE BOOST_JOIN(basic_vtable,BOOST_FUNCTION_NUM_ARGS)
#ifndef BOOST_NO_VOID_RETURNS
# define BOOST_FUNCTION_VOID_RETURN_TYPE void
# define BOOST_FUNCTION_RETURN(X) X
#else
# define BOOST_FUNCTION_VOID_RETURN_TYPE boost::detail::function::unusable
# define BOOST_FUNCTION_RETURN(X) X; return BOOST_FUNCTION_VOID_RETURN_TYPE ()
#endif
#ifdef BOOST_MSVC
# pragma warning(push)
# pragma warning(disable: 4127) // conditional expression is constant.
#endif
#ifdef BOOST_MSVC
# pragma warning(push)
# pragma warning(disable: 4127) // conditional expression is constant.
#endif
namespace boost {
namespace detail {
namespace function {
template<
typename FunctionPtr,
typename R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_PARMS
>
struct BOOST_FUNCTION_FUNCTION_INVOKER
{
static R invoke(function_buffer& function_ptr BOOST_FUNCTION_COMMA
BOOST_FUNCTION_PARMS)
{
FunctionPtr f = reinterpret_cast<FunctionPtr>(function_ptr.func_ptr);
return f(BOOST_FUNCTION_ARGS);
}
};
template<
typename FunctionPtr,
typename R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_PARMS
>
struct BOOST_FUNCTION_VOID_FUNCTION_INVOKER
{
static BOOST_FUNCTION_VOID_RETURN_TYPE
invoke(function_buffer& function_ptr BOOST_FUNCTION_COMMA
BOOST_FUNCTION_PARMS)
{
FunctionPtr f = reinterpret_cast<FunctionPtr>(function_ptr.func_ptr);
BOOST_FUNCTION_RETURN(f(BOOST_FUNCTION_ARGS));
}
};
template<
typename FunctionObj,
typename R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_PARMS
>
struct BOOST_FUNCTION_FUNCTION_OBJ_INVOKER
{
static R invoke(function_buffer& function_obj_ptr BOOST_FUNCTION_COMMA
BOOST_FUNCTION_PARMS)
{
FunctionObj* f;
if (function_allows_small_object_optimization<FunctionObj>::value)
f = reinterpret_cast<FunctionObj*>(&function_obj_ptr.data);
else
f = reinterpret_cast<FunctionObj*>(function_obj_ptr.obj_ptr);
return (*f)(BOOST_FUNCTION_ARGS);
}
};
template<
typename FunctionObj,
typename R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_PARMS
>
struct BOOST_FUNCTION_VOID_FUNCTION_OBJ_INVOKER
{
static BOOST_FUNCTION_VOID_RETURN_TYPE
invoke(function_buffer& function_obj_ptr BOOST_FUNCTION_COMMA
BOOST_FUNCTION_PARMS)
{
FunctionObj* f;
if (function_allows_small_object_optimization<FunctionObj>::value)
f = reinterpret_cast<FunctionObj*>(&function_obj_ptr.data);
else
f = reinterpret_cast<FunctionObj*>(function_obj_ptr.obj_ptr);
BOOST_FUNCTION_RETURN((*f)(BOOST_FUNCTION_ARGS));
}
};
template<
typename FunctionObj,
typename R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_PARMS
>
struct BOOST_FUNCTION_FUNCTION_REF_INVOKER
{
static R invoke(function_buffer& function_obj_ptr BOOST_FUNCTION_COMMA
BOOST_FUNCTION_PARMS)
{
FunctionObj* f =
reinterpret_cast<FunctionObj*>(function_obj_ptr.obj_ptr);
return (*f)(BOOST_FUNCTION_ARGS);
}
};
template<
typename FunctionObj,
typename R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_PARMS
>
struct BOOST_FUNCTION_VOID_FUNCTION_REF_INVOKER
{
static BOOST_FUNCTION_VOID_RETURN_TYPE
invoke(function_buffer& function_obj_ptr BOOST_FUNCTION_COMMA
BOOST_FUNCTION_PARMS)
{
FunctionObj* f =
reinterpret_cast<FunctionObj*>(function_obj_ptr.obj_ptr);
BOOST_FUNCTION_RETURN((*f)(BOOST_FUNCTION_ARGS));
}
};
template<
typename FunctionPtr,
typename R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_PARMS
>
struct BOOST_FUNCTION_GET_FUNCTION_INVOKER
{
typedef typename mpl::if_c<(is_void<R>::value),
BOOST_FUNCTION_VOID_FUNCTION_INVOKER<
FunctionPtr,
R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_ARGS
>,
BOOST_FUNCTION_FUNCTION_INVOKER<
FunctionPtr,
R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_ARGS
>
>::type type;
};
template<
typename FunctionObj,
typename R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_PARMS
>
struct BOOST_FUNCTION_GET_FUNCTION_OBJ_INVOKER
{
typedef typename mpl::if_c<(is_void<R>::value),
BOOST_FUNCTION_VOID_FUNCTION_OBJ_INVOKER<
FunctionObj,
R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_ARGS
>,
BOOST_FUNCTION_FUNCTION_OBJ_INVOKER<
FunctionObj,
R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_ARGS
>
>::type type;
};
template<
typename FunctionObj,
typename R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_PARMS
>
struct BOOST_FUNCTION_GET_FUNCTION_REF_INVOKER
{
typedef typename mpl::if_c<(is_void<R>::value),
BOOST_FUNCTION_VOID_FUNCTION_REF_INVOKER<
FunctionObj,
R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_ARGS
>,
BOOST_FUNCTION_FUNCTION_REF_INVOKER<
FunctionObj,
R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_ARGS
>
>::type type;
};
/**
* vtable for a specific boost::function instance.
*/
template<typename R BOOST_FUNCTION_COMMA BOOST_FUNCTION_TEMPLATE_PARMS,
typename Allocator>
struct BOOST_FUNCTION_VTABLE : vtable_base
{
#ifndef BOOST_NO_VOID_RETURNS
typedef R result_type;
#else
typedef typename function_return_type<R>::type result_type;
#endif // BOOST_NO_VOID_RETURNS
typedef result_type (*invoker_type)(function_buffer&
BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_ARGS);
template<typename F>
BOOST_FUNCTION_VTABLE(F f) : vtable_base(), invoker(0)
{
init(f);
}
template<typename F>
bool assign_to(F f, function_buffer& functor)
{
typedef typename get_function_tag<F>::type tag;
return assign_to(f, functor, tag());
}
void clear(function_buffer& functor)
{
if (manager)
manager(functor, functor, destroy_functor_tag);
}
private:
template<typename F>
void init(F f)
{
typedef typename get_function_tag<F>::type tag;
init(f, tag());
}
// Function pointers
template<typename FunctionPtr>
void init(FunctionPtr /*f*/, function_ptr_tag)
{
typedef typename BOOST_FUNCTION_GET_FUNCTION_INVOKER<
FunctionPtr,
R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_ARGS
>::type
actual_invoker_type;
invoker = &actual_invoker_type::invoke;
manager = &functor_manager<FunctionPtr, Allocator>::manage;
}
template<typename FunctionPtr>
bool
assign_to(FunctionPtr f, function_buffer& functor, function_ptr_tag)
{
this->clear(functor);
if (f) {
// should be a reinterpret cast, but some compilers insist
// on giving cv-qualifiers to free functions
functor.func_ptr = (void (*)())(f);
return true;
} else {
return false;
}
}
// Member pointers
#if BOOST_FUNCTION_NUM_ARGS > 0
template<typename MemberPtr>
void init(MemberPtr f, member_ptr_tag)
{
// DPG TBD: Add explicit support for member function
// objects, so we invoke through mem_fn() but we retain the
// right target_type() values.
this->init(mem_fn(f));
}
template<typename MemberPtr>
bool assign_to(MemberPtr f, function_buffer& functor, member_ptr_tag)
{
// DPG TBD: Add explicit support for member function
// objects, so we invoke through mem_fn() but we retain the
// right target_type() values.
if (f) {
this->assign_to(mem_fn(f), functor);
return true;
} else {
return false;
}
}
#endif // BOOST_FUNCTION_NUM_ARGS > 0
// Function objects
template<typename FunctionObj>
void init(FunctionObj /*f*/, function_obj_tag)
{
typedef typename BOOST_FUNCTION_GET_FUNCTION_OBJ_INVOKER<
FunctionObj,
R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_ARGS
>::type
actual_invoker_type;
invoker = &actual_invoker_type::invoke;
manager = &functor_manager<FunctionObj, Allocator>::manage;
}
// Assign to a function object using the small object optimization
template<typename FunctionObj>
void
assign_functor(FunctionObj f, function_buffer& functor, mpl::true_)
{
new ((void*)&functor.data) FunctionObj(f);
}
// Assign to a function object allocated on the heap.
template<typename FunctionObj>
void
assign_functor(FunctionObj f, function_buffer& functor, mpl::false_)
{
#ifndef BOOST_NO_STD_ALLOCATOR
typedef typename Allocator::template rebind<FunctionObj>::other
allocator_type;
typedef typename allocator_type::pointer pointer_type;
allocator_type allocator;
pointer_type copy = allocator.allocate(1);
allocator.construct(copy, f);
// Get back to the original pointer type
functor.obj_ptr = static_cast<FunctionObj*>(copy);
# else
functor.obj_ptr = new FunctionObj(f);
# endif // BOOST_NO_STD_ALLOCATOR
}
template<typename FunctionObj>
bool
assign_to(FunctionObj f, function_buffer& functor, function_obj_tag)
{
if (!boost::detail::function::has_empty_target(boost::addressof(f))) {
assign_functor(f, functor,
mpl::bool_<(function_allows_small_object_optimization<FunctionObj>::value)>());
return true;
} else {
return false;
}
}
// Reference to a function object
template<typename FunctionObj>
void
init(const reference_wrapper<FunctionObj>& /*f*/, function_obj_ref_tag)
{
typedef typename BOOST_FUNCTION_GET_FUNCTION_REF_INVOKER<
FunctionObj,
R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_ARGS
>::type
actual_invoker_type;
invoker = &actual_invoker_type::invoke;
manager = &reference_manager<FunctionObj>::get;
}
template<typename FunctionObj>
bool
assign_to(const reference_wrapper<FunctionObj>& f,
function_buffer& functor, function_obj_ref_tag)
{
if (!boost::detail::function::has_empty_target(f.get_pointer())) {
// DPG TBD: We might need to detect constness of
// FunctionObj to assign into obj_ptr or const_obj_ptr to
// be truly legit, but no platform in existence makes
// const void* different from void*.
functor.const_obj_ptr = f.get_pointer();
return true;
} else {
return false;
}
}
public:
invoker_type invoker;
};
} // end namespace function
} // end namespace detail
template<
typename R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_PARMS,
typename Allocator = BOOST_FUNCTION_DEFAULT_ALLOCATOR
>
class BOOST_FUNCTION_FUNCTION : public function_base
{
public:
#ifndef BOOST_NO_VOID_RETURNS
typedef R result_type;
#else
typedef typename boost::detail::function::function_return_type<R>::type
result_type;
#endif // BOOST_NO_VOID_RETURNS
private:
typedef boost::detail::function::BOOST_FUNCTION_VTABLE<
R BOOST_FUNCTION_COMMA BOOST_FUNCTION_TEMPLATE_ARGS, Allocator>
vtable_type;
struct clear_type {};
public:
BOOST_STATIC_CONSTANT(int, args = BOOST_FUNCTION_NUM_ARGS);
// add signature for boost::lambda
template<typename Args>
struct sig
{
typedef result_type type;
};
#if BOOST_FUNCTION_NUM_ARGS == 1
typedef T0 argument_type;
#elif BOOST_FUNCTION_NUM_ARGS == 2
typedef T0 first_argument_type;
typedef T1 second_argument_type;
#endif
BOOST_STATIC_CONSTANT(int, arity = BOOST_FUNCTION_NUM_ARGS);
BOOST_FUNCTION_ARG_TYPES
typedef Allocator allocator_type;
typedef BOOST_FUNCTION_FUNCTION self_type;
BOOST_FUNCTION_FUNCTION() : function_base() { }
// MSVC chokes if the following two constructors are collapsed into
// one with a default parameter.
template<typename Functor>
BOOST_FUNCTION_FUNCTION(Functor BOOST_FUNCTION_TARGET_FIX(const &) f
#ifndef BOOST_NO_SFINAE
,typename enable_if_c<
(boost::type_traits::ice_not<
(is_integral<Functor>::value)>::value),
int>::type = 0
#endif // BOOST_NO_SFINAE
) :
function_base()
{
this->assign_to(f);
}
#ifndef BOOST_NO_SFINAE
BOOST_FUNCTION_FUNCTION(clear_type*) : function_base() { }
#else
BOOST_FUNCTION_FUNCTION(int zero) : function_base()
{
BOOST_ASSERT(zero == 0);
}
#endif
BOOST_FUNCTION_FUNCTION(const BOOST_FUNCTION_FUNCTION& f) : function_base()
{
this->assign_to_own(f);
}
~BOOST_FUNCTION_FUNCTION() { clear(); }
#if BOOST_WORKAROUND(BOOST_MSVC, < 1300)
// MSVC 6.0 and prior require all definitions to be inline, but
// these definitions can become very costly.
result_type operator()(BOOST_FUNCTION_PARMS) const
{
if (this->empty())
boost::throw_exception(bad_function_call());
return static_cast<vtable_type*>(vtable)->invoker
(this->functor BOOST_FUNCTION_COMMA BOOST_FUNCTION_ARGS);
}
#else
result_type operator()(BOOST_FUNCTION_PARMS) const;
#endif
// The distinction between when to use BOOST_FUNCTION_FUNCTION and
// when to use self_type is obnoxious. MSVC cannot handle self_type as
// the return type of these assignment operators, but Borland C++ cannot
// handle BOOST_FUNCTION_FUNCTION as the type of the temporary to
// construct.
template<typename Functor>
#ifndef BOOST_NO_SFINAE
typename enable_if_c<
(boost::type_traits::ice_not<
(is_integral<Functor>::value)>::value),
BOOST_FUNCTION_FUNCTION&>::type
#else
BOOST_FUNCTION_FUNCTION&
#endif
operator=(Functor BOOST_FUNCTION_TARGET_FIX(const &) f)
{
this->clear();
try {
this->assign_to(f);
} catch (...) {
vtable = 0;
throw;
}
return *this;
}
#ifndef BOOST_NO_SFINAE
BOOST_FUNCTION_FUNCTION& operator=(clear_type*)
{
this->clear();
return *this;
}
#else
BOOST_FUNCTION_FUNCTION& operator=(int zero)
{
BOOST_ASSERT(zero == 0);
this->clear();
return *this;
}
#endif
// Assignment from another BOOST_FUNCTION_FUNCTION
BOOST_FUNCTION_FUNCTION& operator=(const BOOST_FUNCTION_FUNCTION& f)
{
if (&f == this)
return *this;
this->clear();
try {
this->assign_to_own(f);
} catch (...) {
vtable = 0;
throw;
}
return *this;
}
void swap(BOOST_FUNCTION_FUNCTION& other)
{
if (&other == this)
return;
BOOST_FUNCTION_FUNCTION tmp = *this;
*this = other;
other = tmp;
}
// Clear out a target, if there is one
void clear()
{
if (vtable) {
static_cast<vtable_type*>(vtable)->clear(this->functor);
vtable = 0;
}
}
#if (defined __SUNPRO_CC) && (__SUNPRO_CC <= 0x530) && !(defined BOOST_NO_COMPILER_CONFIG)
// Sun C++ 5.3 can't handle the safe_bool idiom, so don't use it
operator bool () const { return !this->empty(); }
#else
private:
struct dummy {
void nonnull() {};
};
typedef void (dummy::*safe_bool)();
public:
operator safe_bool () const
{ return (this->empty())? 0 : &dummy::nonnull; }
bool operator!() const
{ return this->empty(); }
#endif
private:
void assign_to_own(const BOOST_FUNCTION_FUNCTION& f)
{
if (!f.empty()) {
this->vtable = f.vtable;
f.vtable->manager(f.functor, this->functor,
boost::detail::function::clone_functor_tag);
}
}
template<typename Functor>
void assign_to(Functor f)
{
static vtable_type stored_vtable(f);
if (stored_vtable.assign_to(f, functor)) vtable = &stored_vtable;
else vtable = 0;
}
};
template<typename R BOOST_FUNCTION_COMMA BOOST_FUNCTION_TEMPLATE_PARMS ,
typename Allocator>
inline void swap(BOOST_FUNCTION_FUNCTION<
R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_ARGS ,
Allocator
>& f1,
BOOST_FUNCTION_FUNCTION<
R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_ARGS,
Allocator
>& f2)
{
f1.swap(f2);
}
#if !BOOST_WORKAROUND(BOOST_MSVC, < 1300)
template<typename R BOOST_FUNCTION_COMMA BOOST_FUNCTION_TEMPLATE_PARMS,
typename Allocator>
typename BOOST_FUNCTION_FUNCTION<
R BOOST_FUNCTION_COMMA BOOST_FUNCTION_TEMPLATE_ARGS,
Allocator>::result_type
BOOST_FUNCTION_FUNCTION<R BOOST_FUNCTION_COMMA BOOST_FUNCTION_TEMPLATE_ARGS,
Allocator>
::operator()(BOOST_FUNCTION_PARMS) const
{
if (this->empty())
boost::throw_exception(bad_function_call());
return static_cast<vtable_type*>(vtable)->invoker
(this->functor BOOST_FUNCTION_COMMA BOOST_FUNCTION_ARGS);
}
#endif
// Poison comparisons between boost::function objects of the same type.
template<typename R BOOST_FUNCTION_COMMA BOOST_FUNCTION_TEMPLATE_PARMS ,
typename Allocator>
void operator==(const BOOST_FUNCTION_FUNCTION<
R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_ARGS ,
Allocator>&,
const BOOST_FUNCTION_FUNCTION<
R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_ARGS ,
Allocator>&);
template<typename R BOOST_FUNCTION_COMMA BOOST_FUNCTION_TEMPLATE_PARMS ,
typename Allocator>
void operator!=(const BOOST_FUNCTION_FUNCTION<
R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_ARGS ,
Allocator>&,
const BOOST_FUNCTION_FUNCTION<
R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_ARGS ,
Allocator>&);
#if !defined(BOOST_FUNCTION_NO_FUNCTION_TYPE_SYNTAX)
#if BOOST_FUNCTION_NUM_ARGS == 0
#define BOOST_FUNCTION_PARTIAL_SPEC R (void)
#else
#define BOOST_FUNCTION_PARTIAL_SPEC R (BOOST_PP_ENUM_PARAMS(BOOST_FUNCTION_NUM_ARGS,T))
#endif
template<typename R BOOST_FUNCTION_COMMA
BOOST_FUNCTION_TEMPLATE_PARMS,
typename Allocator>
class function<BOOST_FUNCTION_PARTIAL_SPEC, Allocator>
: public BOOST_FUNCTION_FUNCTION<R, BOOST_FUNCTION_TEMPLATE_ARGS
BOOST_FUNCTION_COMMA Allocator>
{
typedef BOOST_FUNCTION_FUNCTION<R, BOOST_FUNCTION_TEMPLATE_ARGS
BOOST_FUNCTION_COMMA Allocator> base_type;
typedef function self_type;
struct clear_type {};
public:
typedef typename base_type::allocator_type allocator_type;
function() : base_type() {}
template<typename Functor>
function(Functor f
#ifndef BOOST_NO_SFINAE
,typename enable_if_c<
(boost::type_traits::ice_not<
(is_integral<Functor>::value)>::value),
int>::type = 0
#endif
) :
base_type(f)
{
}
#ifndef BOOST_NO_SFINAE
function(clear_type*) : base_type() {}
#endif
function(const self_type& f) : base_type(static_cast<const base_type&>(f)){}
function(const base_type& f) : base_type(static_cast<const base_type&>(f)){}
self_type& operator=(const self_type& f)
{
self_type(f).swap(*this);
return *this;
}
template<typename Functor>
#ifndef BOOST_NO_SFINAE
typename enable_if_c<
(boost::type_traits::ice_not<
(is_integral<Functor>::value)>::value),
self_type&>::type
#else
self_type&
#endif
operator=(Functor f)
{
self_type(f).swap(*this);
return *this;
}
#ifndef BOOST_NO_SFINAE
self_type& operator=(clear_type*)
{
this->clear();
return *this;
}
#endif
self_type& operator=(const base_type& f)
{
self_type(f).swap(*this);
return *this;
}
};
#ifdef BOOST_MSVC
# pragma warning(pop)
#endif
#undef BOOST_FUNCTION_PARTIAL_SPEC
#endif // have partial specialization
} // end namespace boost
#ifdef BOOST_MSVC
# pragma warning(pop)
#endif
// Cleanup after ourselves...
#undef BOOST_FUNCTION_VTABLE
#undef BOOST_FUNCTION_DEFAULT_ALLOCATOR
#undef BOOST_FUNCTION_COMMA
#undef BOOST_FUNCTION_FUNCTION
#undef BOOST_FUNCTION_FUNCTION_INVOKER
#undef BOOST_FUNCTION_VOID_FUNCTION_INVOKER
#undef BOOST_FUNCTION_FUNCTION_OBJ_INVOKER
#undef BOOST_FUNCTION_VOID_FUNCTION_OBJ_INVOKER
#undef BOOST_FUNCTION_FUNCTION_REF_INVOKER
#undef BOOST_FUNCTION_VOID_FUNCTION_REF_INVOKER
#undef BOOST_FUNCTION_GET_FUNCTION_INVOKER
#undef BOOST_FUNCTION_GET_FUNCTION_OBJ_INVOKER
#undef BOOST_FUNCTION_GET_FUNCTION_REF_INVOKER
#undef BOOST_FUNCTION_GET_MEM_FUNCTION_INVOKER
#undef BOOST_FUNCTION_TEMPLATE_PARMS
#undef BOOST_FUNCTION_TEMPLATE_ARGS
#undef BOOST_FUNCTION_PARMS
#undef BOOST_FUNCTION_PARM
#undef BOOST_FUNCTION_ARGS
#undef BOOST_FUNCTION_ARG_TYPE
#undef BOOST_FUNCTION_ARG_TYPES
#undef BOOST_FUNCTION_VOID_RETURN_TYPE
#undef BOOST_FUNCTION_RETURN