boost/intrusive/hashtable.hpp
/////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2006-2007
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/intrusive for documentation.
//
/////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_INTRUSIVE_HASHTABLE_HPP
#define BOOST_INTRUSIVE_HASHTABLE_HPP
#include <boost/intrusive/detail/config_begin.hpp>
//std C++
#include <functional> //std::equal_to
#include <utility> //std::pair
#include <algorithm> //std::swap, std::lower_bound, std::upper_bound
#include <cstddef> //std::size_t
#include <iterator> //std::iterator_traits
//boost
#include <boost/intrusive/detail/assert.hpp>
#include <boost/static_assert.hpp>
#include <boost/functional/hash.hpp>
//General intrusive utilities
#include <boost/intrusive/intrusive_fwd.hpp>
#include <boost/intrusive/detail/pointer_to_other.hpp>
#include <boost/intrusive/detail/hashtable_node.hpp>
#include <boost/intrusive/detail/transform_iterator.hpp>
#include <boost/intrusive/link_mode.hpp>
#include <boost/intrusive/detail/ebo_functor_holder.hpp>
//Implementation utilities
#include <boost/intrusive/trivial_value_traits.hpp>
#include <boost/intrusive/unordered_set_hook.hpp>
#include <boost/intrusive/slist.hpp>
#include <boost/intrusive/detail/mpl.hpp>
namespace boost {
namespace intrusive {
/// @cond
namespace detail {
template <class NodeTraits>
struct hash_reduced_slist_node_traits
{
template <class U> static detail::one test(...);
template <class U> static detail::two test(typename U::reduced_slist_node_traits* = 0);
static const bool value = sizeof(test<NodeTraits>(0)) == sizeof(detail::two);
};
template <class NodeTraits>
struct apply_reduced_slist_node_traits
{
typedef typename NodeTraits::reduced_slist_node_traits type;
};
template <class NodeTraits>
struct reduced_slist_node_traits
{
typedef typename detail::eval_if_c
< hash_reduced_slist_node_traits<NodeTraits>::value
, apply_reduced_slist_node_traits<NodeTraits>
, detail::identity<NodeTraits>
>::type type;
};
template<class NodeTraits>
struct get_slist_impl
{
typedef trivial_value_traits<NodeTraits, normal_link> trivial_traits;
//Reducing symbol length
struct type : make_slist
< typename NodeTraits::node
, boost::intrusive::value_traits<trivial_traits>
, boost::intrusive::constant_time_size<false>
, boost::intrusive::size_type<std::size_t>
>::type
{};
};
template<class SupposedValueTraits>
struct real_from_supposed_value_traits
{
typedef typename detail::eval_if_c
< detail::external_value_traits_is_true
<SupposedValueTraits>::value
, detail::eval_value_traits
<SupposedValueTraits>
, detail::identity
<SupposedValueTraits>
>::type type;
};
template<class SupposedValueTraits>
struct get_slist_impl_from_supposed_value_traits
{
typedef typename
real_from_supposed_value_traits
< SupposedValueTraits>::type real_value_traits;
typedef typename detail::get_node_traits
<real_value_traits>::type node_traits;
typedef typename get_slist_impl
<typename reduced_slist_node_traits
<node_traits>::type
>::type type;
};
template<class SupposedValueTraits>
struct unordered_bucket_impl
{
/// @cond
typedef typename
get_slist_impl_from_supposed_value_traits
<SupposedValueTraits>::type slist_impl;
typedef detail::bucket_impl<slist_impl> implementation_defined;
/// @endcond
typedef implementation_defined type;
};
template<class SupposedValueTraits>
struct unordered_bucket_ptr_impl
{
/// @cond
typedef typename detail::get_node_traits
<SupposedValueTraits>::type::node_ptr node_ptr;
typedef typename unordered_bucket_impl
<SupposedValueTraits>::type bucket_type;
typedef typename boost::pointer_to_other
<node_ptr, bucket_type>::type implementation_defined;
/// @endcond
typedef implementation_defined type;
};
template <class T>
struct store_hash_bool
{
template<bool Add>
struct two_or_three {one _[2 + Add];};
template <class U> static one test(...);
template <class U> static two_or_three<U::store_hash>
test (detail::bool_<U::store_hash>* = 0);
static const std::size_t value = sizeof(test<T>(0));
};
template <class T>
struct store_hash_is_true
{
static const bool value = store_hash_bool<T>::value > sizeof(one)*2;
};
template <class T>
struct optimize_multikey_bool
{
template<bool Add>
struct two_or_three {one _[2 + Add];};
template <class U> static one test(...);
template <class U> static two_or_three<U::optimize_multikey>
test (detail::bool_<U::optimize_multikey>* = 0);
static const std::size_t value = sizeof(test<T>(0));
};
template <class T>
struct optimize_multikey_is_true
{
static const bool value = optimize_multikey_bool<T>::value > sizeof(one)*2;
};
template<class Config>
struct bucket_plus_size
: public detail::size_holder
< Config::constant_time_size
, typename Config::size_type>
{
typedef detail::size_holder
< Config::constant_time_size
, typename Config::size_type> size_traits;
typedef typename Config::bucket_traits bucket_traits;
bucket_plus_size(const bucket_traits &b_traits)
: bucket_traits_(b_traits)
{}
bucket_traits bucket_traits_;
};
template<class Config>
struct bucket_hash_t : public detail::ebo_functor_holder<typename Config::hash>
{
typedef typename Config::hash hasher;
typedef detail::size_holder
< Config::constant_time_size
, typename Config::size_type> size_traits;
typedef typename Config::bucket_traits bucket_traits;
bucket_hash_t(const bucket_traits &b_traits, const hasher & h)
: detail::ebo_functor_holder<hasher>(h), bucket_plus_size_(b_traits)
{}
bucket_plus_size<Config> bucket_plus_size_;
};
template<class Config, bool>
struct bucket_hash_equal_t : public detail::ebo_functor_holder<typename Config::equal>
{
typedef typename Config::equal equal;
typedef typename Config::hash hasher;
typedef typename Config::bucket_traits bucket_traits;
bucket_hash_equal_t(const bucket_traits &b_traits, const hasher & h, const equal &e)
: detail::ebo_functor_holder<typename Config::equal>(e), bucket_hash(b_traits, h)
{}
bucket_hash_t<Config> bucket_hash;
};
template<class Config> //cache_begin == true version
struct bucket_hash_equal_t<Config, true>
: public detail::ebo_functor_holder<typename Config::equal>
{
typedef typename Config::equal equal;
typedef typename Config::hash hasher;
typedef typename Config::bucket_traits bucket_traits;
typedef typename unordered_bucket_ptr_impl
<typename Config::value_traits>::type bucket_ptr;
bucket_hash_equal_t(const bucket_traits &b_traits, const hasher & h, const equal &e)
: detail::ebo_functor_holder<typename Config::equal>(e), bucket_hash(b_traits, h)
{}
bucket_hash_t<Config> bucket_hash;
bucket_ptr cached_begin_;
};
template<class Config>
struct hashtable_data_t : public Config::value_traits
{
typedef typename Config::value_traits value_traits;
typedef typename Config::equal equal;
typedef typename Config::hash hasher;
typedef typename Config::bucket_traits bucket_traits;
hashtable_data_t( const bucket_traits &b_traits, const hasher & h
, const equal &e, const value_traits &val_traits)
: Config::value_traits(val_traits), bucket_hash_equal_(b_traits, h, e)
{}
bucket_hash_equal_t<Config, Config::cache_begin> bucket_hash_equal_;
};
struct insert_commit_data_impl
{
std::size_t hash;
};
template <class T>
struct internal_default_uset_hook
{
template <class U> static detail::one test(...);
template <class U> static detail::two test(typename U::default_uset_hook* = 0);
static const bool value = sizeof(test<T>(0)) == sizeof(detail::two);
};
} //namespace detail {
//!This metafunction will obtain the type of a bucket
//!from the value_traits or hook option to be used with
//!a hash container.
template<class ValueTraitsOrHookOption>
struct unordered_bucket
: public detail::unordered_bucket_impl
<typename ValueTraitsOrHookOption::
template pack<none>::value_traits
>
{};
//!This metafunction will obtain the type of a bucket pointer
//!from the value_traits or hook option to be used with
//!a hash container.
template<class ValueTraitsOrHookOption>
struct unordered_bucket_ptr
: public detail::unordered_bucket_ptr_impl
<typename ValueTraitsOrHookOption::
template pack<none>::value_traits
>
{};
//!This metafunction will obtain the type of the default bucket traits
//!(when the user does not specify the bucket_traits<> option) from the
//!value_traits or hook option to be used with
//!a hash container.
template<class ValueTraitsOrHookOption>
struct unordered_default_bucket_traits
{
/// @cond
typedef typename ValueTraitsOrHookOption::
template pack<none>::value_traits supposed_value_traits;
typedef typename detail::
get_slist_impl_from_supposed_value_traits
<supposed_value_traits>::type slist_impl;
typedef detail::bucket_traits_impl
<slist_impl> implementation_defined;
/// @endcond
typedef implementation_defined type;
};
template <class T>
struct get_default_uset_hook
{
typedef typename T::default_uset_hook type;
};
template < class ValueTraits
, bool UniqueKeys
, class Hash
, class Equal
, class SizeType
, bool ConstantTimeSize
, class BucketTraits
, bool Power2Buckets
, bool CacheBegin
, bool CompareHash
>
struct usetopt
{
typedef ValueTraits value_traits;
typedef Hash hash;
typedef Equal equal;
typedef SizeType size_type;
typedef BucketTraits bucket_traits;
static const bool constant_time_size = ConstantTimeSize;
static const bool power_2_buckets = Power2Buckets;
static const bool unique_keys = UniqueKeys;
static const bool cache_begin = CacheBegin;
static const bool compare_hash = CompareHash;
};
struct default_bucket_traits;
template <class T>
struct uset_defaults
: pack_options
< none
, base_hook
< typename detail::eval_if_c
< detail::internal_default_uset_hook<T>::value
, get_default_uset_hook<T>
, detail::identity<none>
>::type
>
, constant_time_size<true>
, size_type<std::size_t>
, equal<std::equal_to<T> >
, hash<boost::hash<T> >
, bucket_traits<default_bucket_traits>
, power_2_buckets<false>
, cache_begin<false>
, compare_hash<false>
>::type
{};
/// @endcond
//! The class template hashtable is an intrusive hash table container, that
//! is used to construct intrusive unordered_set and unordered_multiset containers. The
//! no-throw guarantee holds only, if the Equal object and Hasher don't throw.
//!
//! hashtable is a semi-intrusive container: each object to be stored in the
//! container must contain a proper hook, but the container also needs
//! additional auxiliary memory to work: hashtable needs a pointer to an array
//! of type `bucket_type` to be passed in the constructor. This bucket array must
//! have at least the same lifetime as the container. This makes the use of
//! hashtable more complicated than purely intrusive containers.
//! `bucket_type` is default-constructible, copyable and assignable
//!
//! The template parameter \c T is the type to be managed by the container.
//! The user can specify additional options and if no options are provided
//! default options are used.
//!
//! The container supports the following options:
//! \c base_hook<>/member_hook<>/value_traits<>,
//! \c constant_time_size<>, \c size_type<>, \c hash<> and \c equal<>
//! \c bucket_traits<>, power_2_buckets<> and cache_begin<>.
//!
//! hashtable only provides forward iterators but it provides 4 iterator types:
//! iterator and const_iterator to navigate through the whole container and
//! local_iterator and const_local_iterator to navigate through the values
//! stored in a single bucket. Local iterators are faster and smaller.
//!
//! It's not recommended to use non constant-time size hashtables because several
//! key functions, like "empty()", become non-constant time functions. Non
//! constant_time size hashtables are mainly provided to support auto-unlink hooks.
//!
//! hashtables, does not make automatic rehashings nor
//! offers functions related to a load factor. Rehashing can be explicitly requested
//! and the user must provide a new bucket array that will be used from that moment.
//!
//! Since no automatic rehashing is done, iterators are never invalidated when
//! inserting or erasing elements. Iterators are only invalidated when rehashing.
#ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED
template<class T, class ...Options>
#else
template<class Config>
#endif
class hashtable_impl
: private detail::hashtable_data_t<Config>
{
public:
typedef typename Config::value_traits value_traits;
/// @cond
static const bool external_value_traits =
detail::external_value_traits_is_true<value_traits>::value;
typedef typename detail::eval_if_c
< external_value_traits
, detail::eval_value_traits<value_traits>
, detail::identity<value_traits>
>::type real_value_traits;
typedef typename Config::bucket_traits bucket_traits;
static const bool external_bucket_traits =
detail::external_bucket_traits_is_true<bucket_traits>::value;
typedef typename detail::eval_if_c
< external_bucket_traits
, detail::eval_bucket_traits<bucket_traits>
, detail::identity<bucket_traits>
>::type real_bucket_traits;
typedef typename detail::get_slist_impl
<typename detail::reduced_slist_node_traits
<typename real_value_traits::node_traits>::type
>::type slist_impl;
/// @endcond
typedef typename real_value_traits::pointer pointer;
typedef typename real_value_traits::const_pointer const_pointer;
typedef typename std::iterator_traits<pointer>::value_type value_type;
typedef typename std::iterator_traits<pointer>::reference reference;
typedef typename std::iterator_traits<const_pointer>::reference const_reference;
typedef typename std::iterator_traits<pointer>::difference_type difference_type;
typedef typename Config::size_type size_type;
typedef value_type key_type;
typedef typename Config::equal key_equal;
typedef typename Config::hash hasher;
typedef detail::bucket_impl<slist_impl> bucket_type;
typedef typename boost::pointer_to_other
<pointer, bucket_type>::type bucket_ptr;
typedef typename slist_impl::iterator siterator;
typedef typename slist_impl::const_iterator const_siterator;
typedef detail::hashtable_iterator<hashtable_impl, false> iterator;
typedef detail::hashtable_iterator<hashtable_impl, true> const_iterator;
typedef typename real_value_traits::node_traits node_traits;
typedef typename node_traits::node node;
typedef typename boost::pointer_to_other
<pointer, node>::type node_ptr;
typedef typename boost::pointer_to_other
<node_ptr, const node>::type const_node_ptr;
typedef typename slist_impl::node_algorithms node_algorithms;
static const bool constant_time_size = Config::constant_time_size;
static const bool stateful_value_traits = detail::store_cont_ptr_on_it<hashtable_impl>::value;
static const bool store_hash = detail::store_hash_is_true<node_traits>::value;
static const bool unique_keys = Config::unique_keys;
static const bool optimize_multikey
= detail::optimize_multikey_is_true<node_traits>::value && !unique_keys;
static const bool power_2_buckets = Config::power_2_buckets;
static const bool cache_begin = Config::cache_begin;
static const bool compare_hash = Config::compare_hash;
/// @cond
private:
//Configuration error: compare_hash<> can't be specified without store_hash<>
//See documentation for more explanations
BOOST_STATIC_ASSERT((!compare_hash || store_hash));
typedef typename slist_impl::node_ptr slist_node_ptr;
typedef typename boost::pointer_to_other
<slist_node_ptr, void>::type void_pointer;
//We'll define group traits, but these won't be instantiated if
//optimize_multikey is not true
typedef unordered_group_adapter<node_traits> group_traits;
typedef circular_slist_algorithms<group_traits> group_algorithms;
typedef detail::bool_<store_hash> store_hash_t;
typedef detail::bool_<optimize_multikey> optimize_multikey_t;
typedef detail::bool_<cache_begin> cache_begin_t;
typedef detail::bool_<power_2_buckets> power_2_buckets_t;
typedef detail::size_holder<constant_time_size, size_type> size_traits;
typedef detail::hashtable_data_t<Config> base_type;
template<bool IsConst>
struct downcast_node_to_value
: public detail::node_to_value<hashtable_impl, IsConst>
{
typedef detail::node_to_value<hashtable_impl, IsConst> base_t;
typedef typename base_t::result_type result_type;
typedef typename detail::add_const_if_c
<typename slist_impl::node, IsConst>::type &first_argument_type;
typedef typename detail::add_const_if_c
<node, IsConst>::type &intermediate_argument_type;
downcast_node_to_value(const hashtable_impl *cont)
: base_t(cont)
{}
result_type operator()(first_argument_type arg) const
{ return this->base_t::operator()(static_cast<intermediate_argument_type>(arg)); }
};
template<class F>
struct node_cast_adaptor
: private detail::ebo_functor_holder<F>
{
typedef detail::ebo_functor_holder<F> base_t;
template<class ConvertibleToF>
node_cast_adaptor(const ConvertibleToF &c2f, const hashtable_impl *cont)
: base_t(base_t(c2f, cont))
{}
typename base_t::node_ptr operator()(const typename slist_impl::node &to_clone)
{ return base_t::operator()(static_cast<const node &>(to_clone)); }
void operator()(typename slist_impl::node_ptr to_clone)
{ base_t::operator()(node_ptr(&static_cast<node &>(*to_clone))); }
};
private:
//noncopyable
hashtable_impl (const hashtable_impl&);
hashtable_impl operator =(const hashtable_impl&);
enum { safemode_or_autounlink =
(int)real_value_traits::link_mode == (int)auto_unlink ||
(int)real_value_traits::link_mode == (int)safe_link };
//Constant-time size is incompatible with auto-unlink hooks!
BOOST_STATIC_ASSERT(!(constant_time_size && ((int)real_value_traits::link_mode == (int)auto_unlink)));
template<class Disposer>
node_cast_adaptor<detail::node_disposer<Disposer, hashtable_impl> >
make_node_disposer(const Disposer &disposer) const
{ return node_cast_adaptor<detail::node_disposer<Disposer, hashtable_impl> >(disposer, this); }
/// @endcond
public:
typedef detail::insert_commit_data_impl insert_commit_data;
typedef detail::transform_iterator
< typename slist_impl::iterator
, downcast_node_to_value<false> > local_iterator;
typedef detail::transform_iterator
< typename slist_impl::iterator
, downcast_node_to_value<true> > const_local_iterator;
/// @cond
const real_value_traits &get_real_value_traits(detail::bool_<false>) const
{ return *this; }
const real_value_traits &get_real_value_traits(detail::bool_<true>) const
{ return base_type::get_value_traits(*this); }
real_value_traits &get_real_value_traits(detail::bool_<false>)
{ return *this; }
real_value_traits &get_real_value_traits(detail::bool_<true>)
{ return base_type::get_value_traits(*this); }
/// @endcond
public:
const real_value_traits &get_real_value_traits() const
{ return this->get_real_value_traits(detail::bool_<external_value_traits>()); }
real_value_traits &get_real_value_traits()
{ return this->get_real_value_traits(detail::bool_<external_value_traits>()); }
//! <b>Requires</b>: buckets must not be being used by any other resource.
//!
//! <b>Effects</b>: Constructs an empty unordered_set, storing a reference
//! to the bucket array and copies of the key_hasher and equal_func functors.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: If value_traits::node_traits::node
//! constructor throws (this does not happen with predefined Boost.Intrusive hooks)
//! or the copy constructor or invocation of hash_func or equal_func throws.
//!
//! <b>Notes</b>: buckets array must be disposed only after
//! *this is disposed.
hashtable_impl ( const bucket_traits &b_traits
, const hasher & hash_func = hasher()
, const key_equal &equal_func = key_equal()
, const value_traits &v_traits = value_traits())
: base_type(b_traits, hash_func, equal_func, v_traits)
{
priv_initialize_buckets();
this->priv_size_traits().set_size(size_type(0));
BOOST_INTRUSIVE_INVARIANT_ASSERT(this->priv_buckets_len() != 0);
//Check power of two bucket array if the option is activated
BOOST_INTRUSIVE_INVARIANT_ASSERT
(!power_2_buckets || (0 == (this->priv_buckets_len() & (this->priv_buckets_len()-1))));
}
//! <b>Effects</b>: Detaches all elements from this. The objects in the unordered_set
//! are not deleted (i.e. no destructors are called).
//!
//! <b>Complexity</b>: Linear to the number of elements in the unordered_set, if
//! it's a safe-mode or auto-unlink value. Otherwise constant.
//!
//! <b>Throws</b>: Nothing.
~hashtable_impl()
{ this->clear(); }
//! <b>Effects</b>: Returns an iterator pointing to the beginning of the unordered_set.
//!
//! <b>Complexity</b>: Amortized constant time.
//! Worst case (empty unordered_set): O(this->bucket_count())
//!
//! <b>Throws</b>: Nothing.
iterator begin()
{
size_type bucket_num;
return iterator(this->priv_begin(bucket_num), this);
}
//! <b>Effects</b>: Returns a const_iterator pointing to the beginning
//! of the unordered_set.
//!
//! <b>Complexity</b>: Amortized constant time.
//! Worst case (empty unordered_set): O(this->bucket_count())
//!
//! <b>Throws</b>: Nothing.
const_iterator begin() const
{ return this->cbegin(); }
//! <b>Effects</b>: Returns a const_iterator pointing to the beginning
//! of the unordered_set.
//!
//! <b>Complexity</b>: Amortized constant time.
//! Worst case (empty unordered_set): O(this->bucket_count())
//!
//! <b>Throws</b>: Nothing.
const_iterator cbegin() const
{
size_type bucket_num;
return const_iterator(this->priv_begin(bucket_num), this);
}
//! <b>Effects</b>: Returns an iterator pointing to the end of the unordered_set.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
iterator end()
{ return iterator(priv_invalid_local_it(), 0); }
//! <b>Effects</b>: Returns a const_iterator pointing to the end of the unordered_set.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_iterator end() const
{ return this->cend(); }
//! <b>Effects</b>: Returns a const_iterator pointing to the end of the unordered_set.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_iterator cend() const
{ return const_iterator(priv_invalid_local_it(), 0); }
//! <b>Effects</b>: Returns the hasher object used by the unordered_set.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: If hasher copy-constructor throws.
hasher hash_function() const
{ return this->priv_hasher(); }
//! <b>Effects</b>: Returns the key_equal object used by the unordered_set.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: If key_equal copy-constructor throws.
key_equal key_eq() const
{ return this->priv_equal(); }
//! <b>Effects</b>: Returns true is the container is empty.
//!
//! <b>Complexity</b>: if constant-time size and cache_last options are disabled,
//! average constant time (worst case, with empty() == true: O(this->bucket_count()).
//! Otherwise constant.
//!
//! <b>Throws</b>: Nothing.
bool empty() const
{
if(constant_time_size){
return !this->size();
}
else if(cache_begin){
return this->begin() == this->end();
}
else{
size_type buckets_len = this->priv_buckets_len();
const bucket_type *b = detail::get_pointer(this->priv_buckets());
for (size_type n = 0; n < buckets_len; ++n, ++b){
if(!b->empty()){
return false;
}
}
return true;
}
}
//! <b>Effects</b>: Returns the number of elements stored in the unordered_set.
//!
//! <b>Complexity</b>: Linear to elements contained in *this if
//! constant_time_size is false. Constant-time otherwise.
//!
//! <b>Throws</b>: Nothing.
size_type size() const
{
if(constant_time_size)
return this->priv_size_traits().get_size();
else{
size_type len = 0;
size_type buckets_len = this->priv_buckets_len();
const bucket_type *b = detail::get_pointer(this->priv_buckets());
for (size_type n = 0; n < buckets_len; ++n, ++b){
len += b->size();
}
return len;
}
}
//! <b>Requires</b>: the hasher and the equality function unqualified swap
//! call should not throw.
//!
//! <b>Effects</b>: Swaps the contents of two unordered_sets.
//! Swaps also the contained bucket array and equality and hasher functors.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: If the swap() call for the comparison or hash functors
//! found using ADL throw. Basic guarantee.
void swap(hashtable_impl& other)
{
using std::swap;
//These can throw
swap(this->priv_equal(), other.priv_equal());
swap(this->priv_hasher(), other.priv_hasher());
//These can't throw
swap(this->priv_real_bucket_traits(), other.priv_real_bucket_traits());
priv_swap_cache(cache_begin_t(), other);
if(constant_time_size){
size_type backup = this->priv_size_traits().get_size();
this->priv_size_traits().set_size(other.priv_size_traits().get_size());
other.priv_size_traits().set_size(backup);
}
}
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases all the elements from *this
//! calling Disposer::operator()(pointer), clones all the
//! elements from src calling Cloner::operator()(const_reference )
//! and inserts them on *this.
//!
//! If cloner throws, all cloned elements are unlinked and disposed
//! calling Disposer::operator()(pointer).
//!
//! <b>Complexity</b>: Linear to erased plus inserted elements.
//!
//! <b>Throws</b>: If cloner throws. Basic guarantee.
template <class Cloner, class Disposer>
void clone_from(const hashtable_impl &src, Cloner cloner, Disposer disposer)
{
this->clear_and_dispose(disposer);
if(!constant_time_size || !src.empty()){
const size_type src_bucket_count = src.bucket_count();
const size_type dst_bucket_count = this->bucket_count();
//Check power of two bucket array if the option is activated
BOOST_INTRUSIVE_INVARIANT_ASSERT
(!power_2_buckets || (0 == (src_bucket_count & (src_bucket_count-1))));
BOOST_INTRUSIVE_INVARIANT_ASSERT
(!power_2_buckets || (0 == (dst_bucket_count & (dst_bucket_count-1))));
//If src bucket count is bigger or equal, structural copy is possible
if(src_bucket_count >= dst_bucket_count){
//First clone the first ones
const bucket_ptr src_buckets = src.priv_buckets();
const bucket_ptr dst_buckets = this->priv_buckets();
size_type constructed;
typedef node_cast_adaptor<detail::node_disposer<Disposer, hashtable_impl> > NodeDisposer;
typedef node_cast_adaptor<detail::node_cloner<Cloner, hashtable_impl> > NodeCloner;
NodeDisposer node_disp(disposer, this);
detail::exception_array_disposer<bucket_type, NodeDisposer>
rollback(dst_buckets[0], node_disp, constructed);
for( constructed = 0
; constructed < dst_bucket_count
; ++constructed){
dst_buckets[constructed].clone_from
( src_buckets[constructed]
, NodeCloner(cloner, this), node_disp);
}
if(src_bucket_count != dst_bucket_count){
//Now insert the remaining ones using the modulo trick
for(//"constructed" comes from the previous loop
; constructed < src_bucket_count
; ++constructed){
bucket_type &dst_b =
dst_buckets[priv_hash_to_bucket(constructed, dst_bucket_count)];
bucket_type &src_b = src_buckets[constructed];
for( siterator b(src_b.begin()), e(src_b.end())
; b != e
; ++b){
dst_b.push_front(*(NodeCloner(cloner, this)(*b.pointed_node())));
}
}
}
rollback.release();
this->priv_size_traits().set_size(src.priv_size_traits().get_size());
priv_insertion_update_cache(0u);
priv_erasure_update_cache();
}
else{
//Unlike previous cloning algorithm, this can throw
//if cloner, the hasher or comparison functor throw
const_iterator b(src.begin()), e(src.end());
detail::exception_disposer<hashtable_impl, Disposer>
rollback(*this, disposer);
for(; b != e; ++b){
this->insert_equal(*cloner(*b));
}
rollback.release();
}
}
}
iterator insert_equal(reference value)
{
size_type bucket_num;
std::size_t hash_value;
siterator prev;
siterator it = this->priv_find
(value, this->priv_hasher(), this->priv_equal(), bucket_num, hash_value, prev);
bucket_type &b = this->priv_buckets()[bucket_num];
bool found_equal = it != priv_invalid_local_it();
node_ptr n = node_ptr(&priv_value_to_node(value));
this->priv_store_hash(n, hash_value, store_hash_t());
if(safemode_or_autounlink)
BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(n));
if(!found_equal){
it = b.before_begin();
}
if(optimize_multikey){
node_ptr first_in_group = found_equal ?
dcast_bucket_ptr(it.pointed_node()) : node_ptr(0);
this->priv_insert_in_group(first_in_group, n, optimize_multikey_t());
}
priv_insertion_update_cache(bucket_num);
this->priv_size_traits().increment();
return iterator(b.insert_after(it, *n), this);
}
template<class Iterator>
void insert_equal(Iterator b, Iterator e)
{
for (; b != e; ++b)
this->insert_equal(*b);
}
//! <b>Requires</b>: value must be an lvalue
//!
//! <b>Effects</b>: Tries to inserts value into the unordered_set.
//!
//! <b>Returns</b>: If the value
//! is not already present inserts it and returns a pair containing the
//! iterator to the new value and true. If there is an equivalent value
//! returns a pair containing an iterator to the already present value
//! and false.
//!
//! <b>Complexity</b>: Average case O(1), worst case O(this->size()).
//!
//! <b>Throws</b>: If the internal hasher or the equality functor throws. Strong guarantee.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
//! No copy-constructors are called.
std::pair<iterator, bool> insert_unique(reference value)
{
insert_commit_data commit_data;
std::pair<iterator, bool> ret = this->insert_unique_check
(value, this->priv_hasher(), this->priv_equal(), commit_data);
if(!ret.second)
return ret;
return std::pair<iterator, bool>
(this->insert_unique_commit(value, commit_data), true);
}
//! <b>Requires</b>: Dereferencing iterator must yield an lvalue
//! of type value_type.
//!
//! <b>Effects</b>: Equivalent to this->insert(t) for each element in [b, e).
//!
//! <b>Complexity</b>: Average case O(N), where N is std::distance(b, e).
//! Worst case O(N*this->size()).
//!
//! <b>Throws</b>: If the internal hasher or the equality functor throws. Basic guarantee.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
//! No copy-constructors are called.
template<class Iterator>
void insert_unique(Iterator b, Iterator e)
{
for (; b != e; ++b)
this->insert_unique(*b);
}
//! <b>Requires</b>: "hash_func" must be a hash function that induces
//! the same hash values as the stored hasher. The difference is that
//! "hash_func" hashes the given key instead of the value_type.
//!
//! "equal_func" must be a equality function that induces
//! the same equality as key_equal. The difference is that
//! "equal_func" compares an arbitrary key with the contained values.
//!
//! <b>Effects</b>: Checks if a value can be inserted in the unordered_set, using
//! a user provided key instead of the value itself.
//!
//! <b>Returns</b>: If there is an equivalent value
//! returns a pair containing an iterator to the already present value
//! and false. If the value can be inserted returns true in the returned
//! pair boolean and fills "commit_data" that is meant to be used with
//! the "insert_commit" function.
//!
//! <b>Complexity</b>: Average case O(1), worst case O(this->size()).
//!
//! <b>Throws</b>: If hash_func or equal_func throw. Strong guarantee.
//!
//! <b>Notes</b>: This function is used to improve performance when constructing
//! a value_type is expensive: if there is an equivalent value
//! the constructed object must be discarded. Many times, the part of the
//! node that is used to impose the hash or the equality is much cheaper to
//! construct than the value_type and this function offers the possibility to
//! use that the part to check if the insertion will be successful.
//!
//! If the check is successful, the user can construct the value_type and use
//! "insert_commit" to insert the object in constant-time.
//!
//! "commit_data" remains valid for a subsequent "insert_commit" only if no more
//! objects are inserted or erased from the unordered_set.
//!
//! After a successful rehashing insert_commit_data remains valid.
template<class KeyType, class KeyHasher, class KeyValueEqual>
std::pair<iterator, bool> insert_unique_check
( const KeyType &key
, KeyHasher hash_func
, KeyValueEqual equal_func
, insert_commit_data &commit_data)
{
size_type bucket_num;
siterator prev;
siterator prev_pos =
this->priv_find(key, hash_func, equal_func, bucket_num, commit_data.hash, prev);
bool success = prev_pos == priv_invalid_local_it();
if(success){
prev_pos = this->priv_buckets()[bucket_num].before_begin();
}
return std::pair<iterator, bool>(iterator(prev_pos, this),success);
}
//! <b>Requires</b>: value must be an lvalue of type value_type. commit_data
//! must have been obtained from a previous call to "insert_check".
//! No objects should have been inserted or erased from the unordered_set between
//! the "insert_check" that filled "commit_data" and the call to "insert_commit".
//!
//! <b>Effects</b>: Inserts the value in the unordered_set using the information obtained
//! from the "commit_data" that a previous "insert_check" filled.
//!
//! <b>Returns</b>: An iterator to the newly inserted object.
//!
//! <b>Complexity</b>: Constant time.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Notes</b>: This function has only sense if a "insert_check" has been
//! previously executed to fill "commit_data". No value should be inserted or
//! erased between the "insert_check" and "insert_commit" calls.
//!
//! After a successful rehashing insert_commit_data remains valid.
iterator insert_unique_commit(reference value, const insert_commit_data &commit_data)
{
size_type bucket_num = priv_hash_to_bucket(commit_data.hash);
bucket_type &b = this->priv_buckets()[bucket_num];
this->priv_size_traits().increment();
node_ptr n = node_ptr(&priv_value_to_node(value));
this->priv_store_hash(n, commit_data.hash, store_hash_t());
if(safemode_or_autounlink)
BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(n));
priv_insertion_update_cache(bucket_num);
this->priv_insert_in_group(node_ptr(0), n, optimize_multikey_t());
return iterator(b.insert_after(b.before_begin(), *n), this);
}
//! <b>Effects</b>: Erases the element pointed to by i.
//!
//! <b>Complexity</b>: Average case O(1), worst case O(this->size()).
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased element. No destructors are called.
void erase(const_iterator i)
{ this->erase_and_dispose(i, detail::null_disposer()); }
//! <b>Effects</b>: Erases the range pointed to by b end e.
//!
//! <b>Complexity</b>: Average case O(std::distance(b, e)),
//! worst case O(this->size()).
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements. No destructors are called.
void erase(const_iterator b, const_iterator e)
{ this->erase_and_dispose(b, e, detail::null_disposer()); }
//! <b>Effects</b>: Erases all the elements with the given value.
//!
//! <b>Returns</b>: The number of erased elements.
//!
//! <b>Complexity</b>: Average case O(this->count(value)).
//! Worst case O(this->size()).
//!
//! <b>Throws</b>: If the internal hasher or the equality functor throws.
//! Basic guarantee.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements. No destructors are called.
size_type erase(const_reference value)
{ return this->erase(value, this->priv_hasher(), this->priv_equal()); }
//! <b>Requires</b>: "hash_func" must be a hash function that induces
//! the same hash values as the stored hasher. The difference is that
//! "hash_func" hashes the given key instead of the value_type.
//!
//! "equal_func" must be a equality function that induces
//! the same equality as key_equal. The difference is that
//! "equal_func" compares an arbitrary key with the contained values.
//!
//! <b>Effects</b>: Erases all the elements that have the same hash and
//! compare equal with the given key.
//!
//! <b>Returns</b>: The number of erased elements.
//!
//! <b>Complexity</b>: Average case O(this->count(value)).
//! Worst case O(this->size()).
//!
//! <b>Throws</b>: If hash_func or equal_func throw. Basic guarantee.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements. No destructors are called.
template<class KeyType, class KeyHasher, class KeyValueEqual>
size_type erase(const KeyType& key, KeyHasher hash_func, KeyValueEqual equal_func)
{ return this->erase_and_dispose(key, hash_func, equal_func, detail::null_disposer()); }
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases the element pointed to by i.
//! Disposer::operator()(pointer) is called for the removed element.
//!
//! <b>Complexity</b>: Average case O(1), worst case O(this->size()).
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators
//! to the erased elements.
template<class Disposer>
void erase_and_dispose(const_iterator i, Disposer disposer)
{
priv_erase(i, disposer, optimize_multikey_t());
this->priv_size_traits().decrement();
priv_erasure_update_cache();
}
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases the range pointed to by b end e.
//! Disposer::operator()(pointer) is called for the removed elements.
//!
//! <b>Complexity</b>: Average case O(std::distance(b, e)),
//! worst case O(this->size()).
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators
//! to the erased elements.
template<class Disposer>
void erase_and_dispose(const_iterator b, const_iterator e, Disposer disposer)
{
if(b == e) return;
//Get the bucket number and local iterator for both iterators
siterator first_local_it(b.slist_it());
size_type first_bucket_num = this->priv_get_bucket_num(first_local_it);
siterator before_first_local_it
= priv_get_previous(priv_buckets()[first_bucket_num], first_local_it);
size_type last_bucket_num;
siterator last_local_it;
//For the end iterator, we will assign the end iterator
//of the last bucket
if(e == this->end()){
last_bucket_num = this->bucket_count() - 1;
last_local_it = priv_buckets()[last_bucket_num].end();
}
else{
last_local_it = e.slist_it();
last_bucket_num = this->priv_get_bucket_num(last_local_it);
}
priv_erase_range(before_first_local_it, first_bucket_num, last_local_it, last_bucket_num, disposer);
priv_erasure_update_cache(first_bucket_num, last_bucket_num);
}
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases all the elements with the given value.
//! Disposer::operator()(pointer) is called for the removed elements.
//!
//! <b>Returns</b>: The number of erased elements.
//!
//! <b>Complexity</b>: Average case O(this->count(value)).
//! Worst case O(this->size()).
//!
//! <b>Throws</b>: If the internal hasher or the equality functor throws.
//! Basic guarantee.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements. No destructors are called.
template<class Disposer>
size_type erase_and_dispose(const_reference value, Disposer disposer)
{ return this->erase_and_dispose(value, priv_hasher(), priv_equal(), disposer); }
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases all the elements with the given key.
//! according to the comparison functor "equal_func".
//! Disposer::operator()(pointer) is called for the removed elements.
//!
//! <b>Returns</b>: The number of erased elements.
//!
//! <b>Complexity</b>: Average case O(this->count(value)).
//! Worst case O(this->size()).
//!
//! <b>Throws</b>: If hash_func or equal_func throw. Basic guarantee.
//!
//! <b>Note</b>: Invalidates the iterators
//! to the erased elements.
template<class KeyType, class KeyHasher, class KeyValueEqual, class Disposer>
size_type erase_and_dispose(const KeyType& key, KeyHasher hash_func
,KeyValueEqual equal_func, Disposer disposer)
{
size_type bucket_num;
std::size_t h;
siterator prev;
siterator it =
this->priv_find(key, hash_func, equal_func, bucket_num, h, prev);
bool success = it != priv_invalid_local_it();
size_type count(0);
if(!success){
return 0;
}
else if(optimize_multikey){
siterator last = bucket_type::s_iterator_to
(*node_traits::get_next(priv_get_last_in_group
(dcast_bucket_ptr(it.pointed_node()))));
this->priv_erase_range_impl(bucket_num, prev, last, disposer, count);
}
else{
//If found erase all equal values
bucket_type &b = this->priv_buckets()[bucket_num];
for(siterator end = b.end(); it != end; ++count, ++it){
slist_node_ptr n(it.pointed_node());
const value_type &v = priv_value_from_slist_node(n);
if(compare_hash){
std::size_t vh = this->priv_stored_hash(v, store_hash_t());
if(h != vh || !equal_func(key, v)){
break;
}
}
else if(!equal_func(key, v)){
break;
}
this->priv_size_traits().decrement();
}
b.erase_after_and_dispose(prev, it, make_node_disposer(disposer));
}
priv_erasure_update_cache();
return count;
}
//! <b>Effects</b>: Erases all of the elements.
//!
//! <b>Complexity</b>: Linear to the number of elements on the container.
//! if it's a safe-mode or auto-unlink value_type. Constant time otherwise.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements. No destructors are called.
void clear()
{
priv_clear_buckets();
this->priv_size_traits().set_size(size_type(0));
}
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases all of the elements.
//!
//! <b>Complexity</b>: Linear to the number of elements on the container.
//! Disposer::operator()(pointer) is called for the removed elements.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements. No destructors are called.
template<class Disposer>
void clear_and_dispose(Disposer disposer)
{
if(!constant_time_size || !this->empty()){
size_type num_buckets = this->bucket_count();
bucket_ptr b = this->priv_buckets();
for(; num_buckets--; ++b){
b->clear_and_dispose(make_node_disposer(disposer));
}
this->priv_size_traits().set_size(size_type(0));
}
priv_initialize_cache();
}
//! <b>Effects</b>: Returns the number of contained elements with the given value
//!
//! <b>Complexity</b>: Average case O(1), worst case O(this->size()).
//!
//! <b>Throws</b>: If the internal hasher or the equality functor throws.
size_type count(const_reference value) const
{ return this->count(value, this->priv_hasher(), this->priv_equal()); }
//! <b>Requires</b>: "hash_func" must be a hash function that induces
//! the same hash values as the stored hasher. The difference is that
//! "hash_func" hashes the given key instead of the value_type.
//!
//! "equal_func" must be a equality function that induces
//! the same equality as key_equal. The difference is that
//! "equal_func" compares an arbitrary key with the contained values.
//!
//! <b>Effects</b>: Returns the number of contained elements with the given key
//!
//! <b>Complexity</b>: Average case O(1), worst case O(this->size()).
//!
//! <b>Throws</b>: If hash_func or equal throw.
template<class KeyType, class KeyHasher, class KeyValueEqual>
size_type count(const KeyType &key, const KeyHasher &hash_func, const KeyValueEqual &equal_func) const
{
size_type bucket_n1, bucket_n2, count;
this->priv_equal_range(key, hash_func, equal_func, bucket_n1, bucket_n2, count);
return count;
}
//! <b>Effects</b>: Finds an iterator to the first element is equal to
//! "value" or end() if that element does not exist.
//!
//! <b>Complexity</b>: Average case O(1), worst case O(this->size()).
//!
//! <b>Throws</b>: If the internal hasher or the equality functor throws.
iterator find(const_reference value)
{ return this->find(value, this->priv_hasher(), this->priv_equal()); }
//! <b>Requires</b>: "hash_func" must be a hash function that induces
//! the same hash values as the stored hasher. The difference is that
//! "hash_func" hashes the given key instead of the value_type.
//!
//! "equal_func" must be a equality function that induces
//! the same equality as key_equal. The difference is that
//! "equal_func" compares an arbitrary key with the contained values.
//!
//! <b>Effects</b>: Finds an iterator to the first element whose key is
//! "key" according to the given hash and equality functor or end() if
//! that element does not exist.
//!
//! <b>Complexity</b>: Average case O(1), worst case O(this->size()).
//!
//! <b>Throws</b>: If hash_func or equal_func throw.
//!
//! <b>Note</b>: This function is used when constructing a value_type
//! is expensive and the value_type can be compared with a cheaper
//! key type. Usually this key is part of the value_type.
template<class KeyType, class KeyHasher, class KeyValueEqual>
iterator find(const KeyType &key, KeyHasher hash_func, KeyValueEqual equal_func)
{
size_type bucket_n;
std::size_t hash;
siterator prev;
siterator local_it = this->priv_find(key, hash_func, equal_func, bucket_n, hash, prev);
return iterator(local_it, this);
}
//! <b>Effects</b>: Finds a const_iterator to the first element whose key is
//! "key" or end() if that element does not exist.
//!
//! <b>Complexity</b>: Average case O(1), worst case O(this->size()).
//!
//! <b>Throws</b>: If the internal hasher or the equality functor throws.
const_iterator find(const_reference value) const
{ return this->find(value, this->priv_hasher(), this->priv_equal()); }
//! <b>Requires</b>: "hash_func" must be a hash function that induces
//! the same hash values as the stored hasher. The difference is that
//! "hash_func" hashes the given key instead of the value_type.
//!
//! "equal_func" must be a equality function that induces
//! the same equality as key_equal. The difference is that
//! "equal_func" compares an arbitrary key with the contained values.
//!
//! <b>Effects</b>: Finds an iterator to the first element whose key is
//! "key" according to the given hasher and equality functor or end() if
//! that element does not exist.
//!
//! <b>Complexity</b>: Average case O(1), worst case O(this->size()).
//!
//! <b>Throws</b>: If hash_func or equal_func throw.
//!
//! <b>Note</b>: This function is used when constructing a value_type
//! is expensive and the value_type can be compared with a cheaper
//! key type. Usually this key is part of the value_type.
template<class KeyType, class KeyHasher, class KeyValueEqual>
const_iterator find
(const KeyType &key, KeyHasher hash_func, KeyValueEqual equal_func) const
{
size_type bucket_n;
std::size_t hash_value;
siterator prev;
siterator sit = this->priv_find(key, hash_func, equal_func, bucket_n, hash_value, prev);
return const_iterator(sit, this);
}
//! <b>Effects</b>: Returns a range containing all elements with values equivalent
//! to value. Returns std::make_pair(this->end(), this->end()) if no such
//! elements exist.
//!
//! <b>Complexity</b>: Average case O(this->count(value)). Worst case O(this->size()).
//!
//! <b>Throws</b>: If the internal hasher or the equality functor throws.
std::pair<iterator,iterator> equal_range(const_reference value)
{ return this->equal_range(value, this->priv_hasher(), this->priv_equal()); }
//! <b>Requires</b>: "hash_func" must be a hash function that induces
//! the same hash values as the stored hasher. The difference is that
//! "hash_func" hashes the given key instead of the value_type.
//!
//! "equal_func" must be a equality function that induces
//! the same equality as key_equal. The difference is that
//! "equal_func" compares an arbitrary key with the contained values.
//!
//! <b>Effects</b>: Returns a range containing all elements with equivalent
//! keys. Returns std::make_pair(this->end(), this->end()) if no such
//! elements exist.
//!
//! <b>Complexity</b>: Average case O(this->count(key, hash_func, equal_func)).
//! Worst case O(this->size()).
//!
//! <b>Throws</b>: If hash_func or the equal_func throw.
//!
//! <b>Note</b>: This function is used when constructing a value_type
//! is expensive and the value_type can be compared with a cheaper
//! key type. Usually this key is part of the value_type.
template<class KeyType, class KeyHasher, class KeyValueEqual>
std::pair<iterator,iterator> equal_range
(const KeyType &key, KeyHasher hash_func, KeyValueEqual equal_func)
{
size_type bucket_n1, bucket_n2, count;
std::pair<siterator, siterator> ret = this->priv_equal_range
(key, hash_func, equal_func, bucket_n1, bucket_n2, count);
return std::pair<iterator, iterator>
(iterator(ret.first, this), iterator(ret.second, this));
}
//! <b>Effects</b>: Returns a range containing all elements with values equivalent
//! to value. Returns std::make_pair(this->end(), this->end()) if no such
//! elements exist.
//!
//! <b>Complexity</b>: Average case O(this->count(value)). Worst case O(this->size()).
//!
//! <b>Throws</b>: If the internal hasher or the equality functor throws.
std::pair<const_iterator, const_iterator>
equal_range(const_reference value) const
{ return this->equal_range(value, this->priv_hasher(), this->priv_equal()); }
//! <b>Requires</b>: "hash_func" must be a hash function that induces
//! the same hash values as the stored hasher. The difference is that
//! "hash_func" hashes the given key instead of the value_type.
//!
//! "equal_func" must be a equality function that induces
//! the same equality as key_equal. The difference is that
//! "equal_func" compares an arbitrary key with the contained values.
//!
//! <b>Effects</b>: Returns a range containing all elements with equivalent
//! keys. Returns std::make_pair(this->end(), this->end()) if no such
//! elements exist.
//!
//! <b>Complexity</b>: Average case O(this->count(key, hash_func, equal_func)).
//! Worst case O(this->size()).
//!
//! <b>Throws</b>: If the hasher or equal_func throw.
//!
//! <b>Note</b>: This function is used when constructing a value_type
//! is expensive and the value_type can be compared with a cheaper
//! key type. Usually this key is part of the value_type.
template<class KeyType, class KeyHasher, class KeyValueEqual>
std::pair<const_iterator,const_iterator> equal_range
(const KeyType &key, KeyHasher hash_func, KeyValueEqual equal_func) const
{
size_type bucket_n1, bucket_n2, count;
std::pair<siterator, siterator> ret =
this->priv_equal_range(key, hash_func, equal_func, bucket_n1, bucket_n2, count);
return std::pair<const_iterator, const_iterator>
(const_iterator(ret.first, this), const_iterator(ret.second, this));
}
//! <b>Requires</b>: value must be an lvalue and shall be in a unordered_set of
//! appropriate type. Otherwise the behavior is undefined.
//!
//! <b>Effects</b>: Returns: a valid iterator belonging to the unordered_set
//! that points to the value
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: If the internal hash function throws.
iterator iterator_to(reference value)
{
return iterator(bucket_type::s_iterator_to(priv_value_to_node(value)), this);
}
//! <b>Requires</b>: value must be an lvalue and shall be in a unordered_set of
//! appropriate type. Otherwise the behavior is undefined.
//!
//! <b>Effects</b>: Returns: a valid const_iterator belonging to the
//! unordered_set that points to the value
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: If the internal hash function throws.
const_iterator iterator_to(const_reference value) const
{
return const_iterator(bucket_type::s_iterator_to(priv_value_to_node(const_cast<reference>(value))), this);
}
//! <b>Requires</b>: value must be an lvalue and shall be in a unordered_set of
//! appropriate type. Otherwise the behavior is undefined.
//!
//! <b>Effects</b>: Returns: a valid local_iterator belonging to the unordered_set
//! that points to the value
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: This static function is available only if the <i>value traits</i>
//! is stateless.
static local_iterator s_local_iterator_to(reference value)
{
BOOST_STATIC_ASSERT((!stateful_value_traits));
siterator sit = bucket_type::s_iterator_to(((hashtable_impl*)0)->priv_value_to_node(value));
return local_iterator(sit, (hashtable_impl*)0);
}
//! <b>Requires</b>: value must be an lvalue and shall be in a unordered_set of
//! appropriate type. Otherwise the behavior is undefined.
//!
//! <b>Effects</b>: Returns: a valid const_local_iterator belonging to
//! the unordered_set that points to the value
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: This static function is available only if the <i>value traits</i>
//! is stateless.
static const_local_iterator s_local_iterator_to(const_reference value)
{
BOOST_STATIC_ASSERT((!stateful_value_traits));
siterator sit = bucket_type::s_iterator_to(((hashtable_impl*)0)->priv_value_to_node(const_cast<value_type&>(value)));
return const_local_iterator(sit, (hashtable_impl*)0);
}
//! <b>Requires</b>: value must be an lvalue and shall be in a unordered_set of
//! appropriate type. Otherwise the behavior is undefined.
//!
//! <b>Effects</b>: Returns: a valid local_iterator belonging to the unordered_set
//! that points to the value
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
local_iterator local_iterator_to(reference value)
{
siterator sit = bucket_type::s_iterator_to(this->priv_value_to_node(value));
return local_iterator(sit, this);
}
//! <b>Requires</b>: value must be an lvalue and shall be in a unordered_set of
//! appropriate type. Otherwise the behavior is undefined.
//!
//! <b>Effects</b>: Returns: a valid const_local_iterator belonging to
//! the unordered_set that points to the value
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_local_iterator local_iterator_to(const_reference value) const
{
siterator sit = bucket_type::s_iterator_to
(const_cast<node &>(this->priv_value_to_node(value)));
return const_local_iterator(sit, this);
}
//! <b>Effects</b>: Returns the number of buckets passed in the constructor
//! or the last rehash function.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
size_type bucket_count() const
{ return this->priv_buckets_len(); }
//! <b>Requires</b>: n is in the range [0, this->bucket_count()).
//!
//! <b>Effects</b>: Returns the number of elements in the nth bucket.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
size_type bucket_size(size_type n) const
{ return this->priv_buckets()[n].size(); }
//! <b>Effects</b>: Returns the index of the bucket in which elements
//! with keys equivalent to k would be found, if any such element existed.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: If the hash functor throws.
//!
//! <b>Note</b>: the return value is in the range [0, this->bucket_count()).
size_type bucket(const key_type& k) const
{ return this->bucket(k, this->priv_hasher()); }
//! <b>Requires</b>: "hash_func" must be a hash function that induces
//! the same hash values as the stored hasher. The difference is that
//! "hash_func" hashes the given key instead of the value_type.
//!
//! <b>Effects</b>: Returns the index of the bucket in which elements
//! with keys equivalent to k would be found, if any such element existed.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: If hash_func throws.
//!
//! <b>Note</b>: the return value is in the range [0, this->bucket_count()).
template<class KeyType, class KeyHasher>
size_type bucket(const KeyType& k, const KeyHasher &hash_func) const
{ return priv_hash_to_bucket(hash_func(k)); }
//! <b>Effects</b>: Returns the bucket array pointer passed in the constructor
//! or the last rehash function.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
bucket_ptr bucket_pointer() const
{ return this->priv_buckets(); }
//! <b>Requires</b>: n is in the range [0, this->bucket_count()).
//!
//! <b>Effects</b>: Returns a local_iterator pointing to the beginning
//! of the sequence stored in the bucket n.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: [this->begin(n), this->end(n)) is a valid range
//! containing all of the elements in the nth bucket.
local_iterator begin(size_type n)
{ return local_iterator(this->priv_buckets()[n].begin(), this); }
//! <b>Requires</b>: n is in the range [0, this->bucket_count()).
//!
//! <b>Effects</b>: Returns a const_local_iterator pointing to the beginning
//! of the sequence stored in the bucket n.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: [this->begin(n), this->end(n)) is a valid range
//! containing all of the elements in the nth bucket.
const_local_iterator begin(size_type n) const
{ return this->cbegin(n); }
//! <b>Requires</b>: n is in the range [0, this->bucket_count()).
//!
//! <b>Effects</b>: Returns a const_local_iterator pointing to the beginning
//! of the sequence stored in the bucket n.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: [this->begin(n), this->end(n)) is a valid range
//! containing all of the elements in the nth bucket.
const_local_iterator cbegin(size_type n) const
{
siterator sit = const_cast<bucket_type&>(this->priv_buckets()[n]).begin();
return const_local_iterator(sit, this);
}
//! <b>Requires</b>: n is in the range [0, this->bucket_count()).
//!
//! <b>Effects</b>: Returns a local_iterator pointing to the end
//! of the sequence stored in the bucket n.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: [this->begin(n), this->end(n)) is a valid range
//! containing all of the elements in the nth bucket.
local_iterator end(size_type n)
{ return local_iterator(this->priv_buckets()[n].end(), this); }
//! <b>Requires</b>: n is in the range [0, this->bucket_count()).
//!
//! <b>Effects</b>: Returns a const_local_iterator pointing to the end
//! of the sequence stored in the bucket n.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: [this->begin(n), this->end(n)) is a valid range
//! containing all of the elements in the nth bucket.
const_local_iterator end(size_type n) const
{ return this->cend(n); }
//! <b>Requires</b>: n is in the range [0, this->bucket_count()).
//!
//! <b>Effects</b>: Returns a const_local_iterator pointing to the end
//! of the sequence stored in the bucket n.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: [this->begin(n), this->end(n)) is a valid range
//! containing all of the elements in the nth bucket.
const_local_iterator cend(size_type n) const
{ return const_local_iterator(const_cast<bucket_type&>(this->priv_buckets()[n]).end(), this); }
//! <b>Requires</b>: new_buckets must be a pointer to a new bucket array
//! or the same as the old bucket array. new_size is the length of the
//! the array pointed by new_buckets. If new_buckets == this->bucket_pointer()
//! n can be bigger or smaller than this->bucket_count().
//!
//! <b>Effects</b>: Updates the internal reference with the new bucket erases
//! the values from the old bucket and inserts then in the new one.
//!
//! <b>Complexity</b>: Average case linear in this->size(), worst case quadratic.
//!
//! <b>Throws</b>: If the hasher functor throws. Basic guarantee.
void rehash(const bucket_traits &new_bucket_traits)
{
bucket_ptr new_buckets = new_bucket_traits.bucket_begin();
size_type new_buckets_len = new_bucket_traits.bucket_count();
bucket_ptr old_buckets = this->priv_buckets();
size_type old_buckets_len = this->priv_buckets_len();
//Check power of two bucket array if the option is activated
BOOST_INTRUSIVE_INVARIANT_ASSERT
(!power_2_buckets || (0 == (new_buckets_len & (new_buckets_len-1u))));
size_type n = priv_get_cache_bucket_num();
const bool same_buffer = old_buckets == new_buckets;
//If the new bucket length is a common factor
//of the old one we can avoid hash calculations.
const bool fast_shrink = (old_buckets_len > new_buckets_len) &&
(power_2_buckets ||(old_buckets_len % new_buckets_len) == 0);
//If we are shrinking the same bucket array and it's
//is a fast shrink, just rehash the last nodes
size_type new_first_bucket_num = new_buckets_len;
if(same_buffer && fast_shrink && (n < new_buckets_len)){
n = new_buckets_len;
new_first_bucket_num = priv_get_cache_bucket_num();
}
//Anti-exception stuff: they destroy the elements if something goes wrong
typedef detail::init_disposer<node_algorithms> NodeDisposer;
NodeDisposer node_disp;
detail::exception_array_disposer<bucket_type, NodeDisposer>
rollback1(new_buckets[0], node_disp, new_buckets_len);
detail::exception_array_disposer<bucket_type, NodeDisposer>
rollback2(old_buckets[0], node_disp, old_buckets_len);
//Put size in a safe value for rollback exception
size_type size_backup = this->priv_size_traits().get_size();
this->priv_size_traits().set_size(0);
//Put cache to safe position
priv_initialize_cache();
priv_insertion_update_cache(size_type(0u));
//Iterate through nodes
for(; n < old_buckets_len; ++n){
bucket_type &old_bucket = old_buckets[n];
if(!fast_shrink){
siterator before_i(old_bucket.before_begin());
siterator end(old_bucket.end());
siterator i(old_bucket.begin());
for(;i != end; ++i){
const value_type &v = priv_value_from_slist_node(i.pointed_node());
const std::size_t hash_value = this->priv_stored_hash(v, store_hash_t());
const size_type new_n = priv_hash_to_bucket(hash_value, new_buckets_len);
if(cache_begin && new_n < new_first_bucket_num)
new_first_bucket_num = new_n;
siterator last = bucket_type::s_iterator_to
(*priv_get_last_in_group(dcast_bucket_ptr(i.pointed_node())));
if(same_buffer && new_n == n){
before_i = last;
}
else{
bucket_type &new_b = new_buckets[new_n];
new_b.splice_after(new_b.before_begin(), old_bucket, before_i, last);
}
i = before_i;
}
}
else{
const size_type new_n = priv_hash_to_bucket(n, new_buckets_len);
if(cache_begin && new_n < new_first_bucket_num)
new_first_bucket_num = new_n;
bucket_type &new_b = new_buckets[new_n];
if(!old_bucket.empty()){
new_b.splice_after( new_b.before_begin()
, old_bucket
, old_bucket.before_begin()
, priv_get_last(old_bucket));
}
}
}
this->priv_size_traits().set_size(size_backup);
this->priv_real_bucket_traits() = new_bucket_traits;
priv_initialize_cache();
priv_insertion_update_cache(new_first_bucket_num);
//priv_erasure_update_cache();
rollback1.release();
rollback2.release();
}
//! <b>Effects</b>: Returns the nearest new bucket count optimized for
//! the container that is bigger than n. This suggestion can be used
//! to create bucket arrays with a size that will usually improve
//! container's performance. If such value does not exist, the
//! higher possible value is returned.
//!
//! <b>Complexity</b>: Amortized constant time.
//!
//! <b>Throws</b>: Nothing.
static size_type suggested_upper_bucket_count(size_type n)
{
const std::size_t *primes = &detail::prime_list_holder<0>::prime_list[0];
const std::size_t *primes_end = primes + detail::prime_list_holder<0>::prime_list_size;
size_type const* bound = std::lower_bound(primes, primes_end, n);
if(bound == primes_end)
bound--;
return size_type(*bound);
}
//! <b>Effects</b>: Returns the nearest new bucket count optimized for
//! the container that is smaller than n. This suggestion can be used
//! to create bucket arrays with a size that will usually improve
//! container's performance. If such value does not exist, the
//! lower possible value is returned.
//!
//! <b>Complexity</b>: Amortized constant time.
//!
//! <b>Throws</b>: Nothing.
static size_type suggested_lower_bucket_count(size_type n)
{
const std::size_t *primes = &detail::prime_list_holder<0>::prime_list[0];
const std::size_t *primes_end = primes + detail::prime_list_holder<0>::prime_list_size;
size_type const* bound = std::upper_bound(primes, primes_end, n);
if(bound != primes_end)
bound--;
return size_type(*bound);
}
/// @cond
private:
std::size_t priv_hash_to_bucket(std::size_t hash_value) const
{ return priv_hash_to_bucket(hash_value, power_2_buckets_t()); }
std::size_t priv_hash_to_bucket(std::size_t hash_value, detail::bool_<false>) const
{ return hash_value % this->priv_real_bucket_traits().bucket_count(); }
std::size_t priv_hash_to_bucket(std::size_t hash_value, detail::bool_<true>) const
{ return hash_value & (this->priv_real_bucket_traits().bucket_count() - 1); }
std::size_t priv_hash_to_bucket(std::size_t hash_value, std::size_t bucket_len) const
{ return priv_hash_to_bucket(hash_value, bucket_len, power_2_buckets_t()); }
std::size_t priv_hash_to_bucket(std::size_t hash_value, std::size_t bucket_len, detail::bool_<false>) const
{ return hash_value % bucket_len; }
std::size_t priv_hash_to_bucket(std::size_t hash_value, std::size_t bucket_len, detail::bool_<true>) const
{ return hash_value & (bucket_len - 1); }
const key_equal &priv_equal() const
{ return static_cast<const key_equal&>(this->bucket_hash_equal_.get()); }
key_equal &priv_equal()
{ return static_cast<key_equal&>(this->bucket_hash_equal_.get()); }
value_type &priv_value_from_slist_node(slist_node_ptr n)
{ return *this->get_real_value_traits().to_value_ptr(dcast_bucket_ptr(n)); }
const value_type &priv_value_from_slist_node(slist_node_ptr n) const
{ return *this->get_real_value_traits().to_value_ptr(dcast_bucket_ptr(n)); }
const real_bucket_traits &priv_real_bucket_traits(detail::bool_<false>) const
{ return this->bucket_hash_equal_.bucket_hash.bucket_plus_size_.bucket_traits_; }
const real_bucket_traits &priv_real_bucket_traits(detail::bool_<true>) const
{ return this->bucket_hash_equal_.bucket_hash.bucket_plus_size_.bucket_traits_.get_bucket_traits(*this); }
real_bucket_traits &priv_real_bucket_traits(detail::bool_<false>)
{ return this->bucket_hash_equal_.bucket_hash.bucket_plus_size_.bucket_traits_; }
real_bucket_traits &priv_real_bucket_traits(detail::bool_<true>)
{ return this->bucket_hash_equal_.bucket_hash.bucket_plus_size_.bucket_traits_.get_bucket_traits(*this); }
const real_bucket_traits &priv_real_bucket_traits() const
{ return this->priv_real_bucket_traits(detail::bool_<external_bucket_traits>()); }
real_bucket_traits &priv_real_bucket_traits()
{ return this->priv_real_bucket_traits(detail::bool_<external_bucket_traits>()); }
const hasher &priv_hasher() const
{ return static_cast<const hasher&>(this->bucket_hash_equal_.bucket_hash.get()); }
hasher &priv_hasher()
{ return static_cast<hasher&>(this->bucket_hash_equal_.bucket_hash.get()); }
bucket_ptr priv_buckets() const
{ return this->priv_real_bucket_traits().bucket_begin(); }
size_type priv_buckets_len() const
{ return this->priv_real_bucket_traits().bucket_count(); }
static node_ptr uncast(const_node_ptr ptr)
{ return node_ptr(const_cast<node*>(detail::get_pointer(ptr))); }
node &priv_value_to_node(value_type &v)
{ return *this->get_real_value_traits().to_node_ptr(v); }
const node &priv_value_to_node(const value_type &v) const
{ return *this->get_real_value_traits().to_node_ptr(v); }
size_traits &priv_size_traits()
{ return this->bucket_hash_equal_.bucket_hash.bucket_plus_size_; }
const size_traits &priv_size_traits() const
{ return this->bucket_hash_equal_.bucket_hash.bucket_plus_size_; }
template<class Disposer>
void priv_erase_range_impl
(size_type bucket_num, siterator before_first_it, siterator end, Disposer disposer, size_type &num_erased)
{
const bucket_ptr buckets = priv_buckets();
bucket_type &b = buckets[bucket_num];
if(before_first_it == b.before_begin() && end == b.end()){
priv_erase_range_impl(bucket_num, 1, disposer, num_erased);
}
else{
num_erased = 0;
siterator to_erase(before_first_it);
++to_erase;
slist_node_ptr end_ptr = end.pointed_node();
while(to_erase != end){
priv_erase_from_group(end_ptr, dcast_bucket_ptr(to_erase.pointed_node()), optimize_multikey_t());
to_erase = b.erase_after_and_dispose(before_first_it, make_node_disposer(disposer));
++num_erased;
}
this->priv_size_traits().set_size(this->priv_size_traits().get_size()-num_erased);
}
}
template<class Disposer>
void priv_erase_range_impl
(size_type first_bucket_num, size_type num_buckets, Disposer disposer, size_type &num_erased)
{
//Now fully clear the intermediate buckets
const bucket_ptr buckets = priv_buckets();
num_erased = 0;
for(size_type i = first_bucket_num; i < (num_buckets + first_bucket_num); ++i){
bucket_type &b = buckets[i];
siterator b_begin(b.before_begin());
siterator nxt(b_begin);
++nxt;
siterator end(b.end());
while(nxt != end){
priv_init_group(nxt.pointed_node(), optimize_multikey_t());
nxt = b.erase_after_and_dispose
(b_begin, make_node_disposer(disposer));
this->priv_size_traits().decrement();
++num_erased;
}
}
}
template<class Disposer>
void priv_erase_range( siterator before_first_it, size_type first_bucket
, siterator last_it, size_type last_bucket
, Disposer disposer)
{
size_type num_erased;
if (first_bucket == last_bucket){
priv_erase_range_impl(first_bucket, before_first_it, last_it, disposer, num_erased);
}
else {
bucket_type *b = (&this->priv_buckets()[0]);
priv_erase_range_impl(first_bucket, before_first_it, b[first_bucket].end(), disposer, num_erased);
if(size_type n = (last_bucket - first_bucket - 1))
priv_erase_range_impl(first_bucket + 1, n, disposer, num_erased);
priv_erase_range_impl(last_bucket, b[last_bucket].before_begin(), last_it, disposer, num_erased);
}
}
static node_ptr dcast_bucket_ptr(typename slist_impl::node_ptr p)
{ return node_ptr(&static_cast<node&>(*p)); }
std::size_t priv_stored_hash(const value_type &v, detail::true_) const
{ return node_traits::get_hash(this->get_real_value_traits().to_node_ptr(v)); }
std::size_t priv_stored_hash(const value_type &v, detail::false_) const
{ return priv_hasher()(v); }
std::size_t priv_stored_hash(slist_node_ptr n, detail::true_) const
{ return node_traits::get_hash(dcast_bucket_ptr(n)); }
std::size_t priv_stored_hash(slist_node_ptr, detail::false_) const
{
//This code should never be reached!
BOOST_INTRUSIVE_INVARIANT_ASSERT(0);
return 0;
}
static void priv_store_hash(node_ptr p, std::size_t h, detail::true_)
{ return node_traits::set_hash(p, h); }
static void priv_store_hash(node_ptr, std::size_t, detail::false_)
{}
static void priv_clear_group_nodes(bucket_type &b, detail::true_)
{
siterator it(b.begin()), itend(b.end());
while(it != itend){
node_ptr to_erase(dcast_bucket_ptr(it.pointed_node()));
++it;
group_algorithms::init(to_erase);
}
}
static void priv_clear_group_nodes(bucket_type &, detail::false_)
{}
std::size_t priv_get_bucket_num(siterator it)
{ return priv_get_bucket_num_hash_dispatch(it, store_hash_t()); }
std::size_t priv_get_bucket_num_hash_dispatch(siterator it, detail::true_)
{
return this->priv_hash_to_bucket
(this->priv_stored_hash(it.pointed_node(), store_hash_t()));
}
std::size_t priv_get_bucket_num_hash_dispatch(siterator it, detail::false_)
{ return priv_get_bucket_num_no_hash_store(it, optimize_multikey_t()); }
std::size_t priv_get_bucket_num_no_hash_store( siterator it, detail::true_)
{
bucket_ptr f(priv_buckets()), l(f + priv_buckets_len() - 1);
slist_node_ptr bb = priv_get_bucket_before_begin
( f->end().pointed_node()
, l->end().pointed_node()
, dcast_bucket_ptr(it.pointed_node()));
//Now get the bucket_impl from the iterator
const bucket_type &b = static_cast<const bucket_type&>
(bucket_type::slist_type::container_from_end_iterator(bucket_type::s_iterator_to(*bb)));
//Now just calculate the index b has in the bucket array
return static_cast<size_type>(&b - &*f);
}
std::size_t priv_get_bucket_num_no_hash_store( siterator it, detail::false_)
{
bucket_ptr f(priv_buckets()), l(f + priv_buckets_len() - 1);
slist_node_ptr first_ptr(f->cend().pointed_node())
, last_ptr(l->cend().pointed_node());
//The end node is embedded in the singly linked list:
//iterate until we reach it.
while(!(first_ptr <= it.pointed_node() && it.pointed_node() <= last_ptr)){
++it;
}
//Now get the bucket_impl from the iterator
const bucket_type &b = static_cast<const bucket_type&>
(bucket_type::container_from_end_iterator(it));
//Now just calculate the index b has in the bucket array
return static_cast<std::size_t>(&b - &*f);
}
void priv_erase_from_group(slist_node_ptr end_ptr, node_ptr to_erase_ptr, detail::true_)
{
node_ptr nxt_ptr(node_traits::get_next(to_erase_ptr));
node_ptr prev_in_group_ptr(group_traits::get_next(to_erase_ptr));
bool last_in_group = (end_ptr == nxt_ptr) ||
(group_traits::get_next(nxt_ptr) != to_erase_ptr);
bool first_in_group = node_traits::get_next(prev_in_group_ptr) != to_erase_ptr;
if(first_in_group && last_in_group){
group_algorithms::init(to_erase_ptr);
}
else if(first_in_group){
group_algorithms::unlink_after(nxt_ptr);
}
else if(last_in_group){
node_ptr first_in_group = //possible_first_in_group ? possible_first_in_group :
priv_get_first_in_group_of_last_in_group(to_erase_ptr);
group_algorithms::unlink_after(first_in_group);
//possible_first_in_group = 0;
}
else{
group_algorithms::unlink_after(nxt_ptr);
}
}
void priv_erase_from_group(slist_node_ptr, node_ptr, detail::false_)
{}
void priv_init_group(slist_node_ptr n, detail::true_)
{ group_algorithms::init(dcast_bucket_ptr(n)); }
void priv_init_group(slist_node_ptr, detail::false_)
{}
void priv_insert_in_group(node_ptr first_in_group, node_ptr n, detail::true_)
{
if(first_in_group){
if(group_algorithms::unique(first_in_group))
group_algorithms::link_after(first_in_group, n);
else{
group_algorithms::link_after(node_traits::get_next(first_in_group), n);
}
}
else{
group_algorithms::init_header(n);
}
}
static slist_node_ptr priv_get_bucket_before_begin
(slist_node_ptr bucket_beg, slist_node_ptr bucket_end, node_ptr p)
{
//First find the last node of p's group.
//This requires checking the first node of the next group or
//the bucket node.
node_ptr prev_node = p;
node_ptr nxt(node_traits::get_next(p));
while(!(bucket_beg <= nxt && nxt <= bucket_end) &&
(group_traits::get_next(nxt) == prev_node)){
prev_node = nxt;
nxt = node_traits::get_next(nxt);
}
//If we've reached the bucket node just return it.
if(bucket_beg <= nxt && nxt <= bucket_end){
return nxt;
}
//Otherwise, iterate using group links until the bucket node
node_ptr first_node_of_group = nxt;
node_ptr last_node_group = group_traits::get_next(first_node_of_group);
slist_node_ptr possible_end = node_traits::get_next(last_node_group);
while(!(bucket_beg <= possible_end && possible_end <= bucket_end)){
first_node_of_group = dcast_bucket_ptr(possible_end);
last_node_group = group_traits::get_next(first_node_of_group);
possible_end = node_traits::get_next(last_node_group);
}
return possible_end;
}
static node_ptr priv_get_prev_to_first_in_group(slist_node_ptr bucket_node, node_ptr first_in_group)
{
//Just iterate using group links and obtain the node
//before "first_in_group)"
node_ptr prev_node = dcast_bucket_ptr(bucket_node);
node_ptr nxt(node_traits::get_next(prev_node));
while(nxt != first_in_group){
prev_node = group_traits::get_next(nxt);
nxt = node_traits::get_next(prev_node);
}
return prev_node;
}
static node_ptr priv_get_first_in_group_of_last_in_group(node_ptr last_in_group)
{
//Just iterate using group links and obtain the node
//before "last_in_group"
node_ptr possible_first = group_traits::get_next(last_in_group);
node_ptr possible_first_prev = group_traits::get_next(possible_first);
// The deleted node is at the end of the group, so the
// node in the group pointing to it is at the beginning
// of the group. Find that to change its pointer.
while(possible_first_prev != last_in_group){
possible_first = possible_first_prev;
possible_first_prev = group_traits::get_next(possible_first);
}
return possible_first;
}
void priv_insert_in_group(node_ptr, node_ptr, detail::false_)
{}
static node_ptr priv_get_last_in_group(node_ptr first_in_group)
{ return priv_get_last_in_group(first_in_group, optimize_multikey_t()); }
static node_ptr priv_get_last_in_group(node_ptr first_in_group, detail::true_)
{ return group_traits::get_next(first_in_group); }
static node_ptr priv_get_last_in_group(node_ptr n, detail::false_)
{ return n; }
siterator priv_get_previous
(bucket_type &b, siterator i)
{ return priv_get_previous(b, i, optimize_multikey_t()); }
siterator priv_get_previous
(bucket_type &b, siterator i, detail::true_)
{
node_ptr elem(dcast_bucket_ptr(i.pointed_node()));
node_ptr prev_in_group(group_traits::get_next(elem));
bool first_in_group = node_traits::get_next(prev_in_group) != elem;
typename bucket_type::node &n = first_in_group
? *priv_get_prev_to_first_in_group(b.end().pointed_node(), elem)
: *group_traits::get_next(elem)
;
return bucket_type::s_iterator_to(n);
}
siterator priv_get_previous
(bucket_type &b, siterator i, detail::false_)
{ return b.previous(i); }
static siterator priv_get_last(bucket_type &b)
{ return priv_get_last(b, optimize_multikey_t()); }
static siterator priv_get_last(bucket_type &b, detail::true_)
{
//First find the last node of p's group.
//This requires checking the first node of the next group or
//the bucket node.
slist_node_ptr end_ptr(b.end().pointed_node());
node_ptr possible_end(node_traits::get_next( dcast_bucket_ptr(end_ptr)));
node_ptr last_node_group(possible_end);
while(end_ptr != possible_end){
last_node_group = group_traits::get_next(dcast_bucket_ptr(possible_end));
possible_end = node_traits::get_next(last_node_group);
}
return bucket_type::s_iterator_to(*last_node_group);
}
static siterator priv_get_last(bucket_type &b, detail::false_)
{ return b.previous(b.end()); }
siterator priv_get_previous_and_next_in_group
(siterator i, node_ptr &nxt_in_group)
{
siterator prev;
node_ptr elem(dcast_bucket_ptr(i.pointed_node()));
bucket_ptr f(priv_buckets()), l(f + priv_buckets_len() - 1);
slist_node_ptr first_end_ptr(f->cend().pointed_node());
slist_node_ptr last_end_ptr (l->cend().pointed_node());
node_ptr nxt(node_traits::get_next(elem));
node_ptr prev_in_group(group_traits::get_next(elem));
bool last_in_group = (first_end_ptr <= nxt && nxt <= last_end_ptr) ||
(group_traits::get_next(nxt) != elem);
bool first_in_group = node_traits::get_next(prev_in_group) != elem;
if(first_in_group){
node_ptr start_pos;
if(last_in_group){
start_pos = elem;
nxt_in_group = 0;
}
else{
start_pos = prev_in_group;
nxt_in_group = node_traits::get_next(elem);
}
slist_node_ptr bucket_node;
if(store_hash){
bucket_node = this->priv_buckets()
[this->priv_hash_to_bucket
(this->priv_stored_hash(elem, store_hash_t()))
].before_begin().pointed_node();
}
else{
bucket_node = priv_get_bucket_before_begin
(first_end_ptr, last_end_ptr, start_pos);
}
prev = bucket_type::s_iterator_to
(*priv_get_prev_to_first_in_group(bucket_node, elem));
}
else{
if(last_in_group){
nxt_in_group = priv_get_first_in_group_of_last_in_group(elem);
}
else{
nxt_in_group = node_traits::get_next(elem);
}
prev = bucket_type::s_iterator_to(*group_traits::get_next(elem));
}
return prev;
}
template<class Disposer>
void priv_erase(const_iterator i, Disposer disposer, detail::true_)
{
siterator elem(i.slist_it());
node_ptr nxt_in_group;
siterator prev = priv_get_previous_and_next_in_group(elem, nxt_in_group);
bucket_type::s_erase_after_and_dispose(prev, make_node_disposer(disposer));
if(nxt_in_group)
group_algorithms::unlink_after(nxt_in_group);
if(safemode_or_autounlink)
group_algorithms::init(dcast_bucket_ptr(elem.pointed_node()));
}
template <class Disposer>
void priv_erase(const_iterator i, Disposer disposer, detail::false_)
{
siterator to_erase(i.slist_it());
bucket_type &b = this->priv_buckets()[this->priv_get_bucket_num(to_erase)];
siterator prev(priv_get_previous(b, to_erase));
b.erase_after_and_dispose(prev, make_node_disposer(disposer));
}
bucket_ptr priv_invalid_bucket() const
{
const real_bucket_traits &rbt = this->priv_real_bucket_traits();
return rbt.bucket_begin() + rbt.bucket_count();
}
siterator priv_invalid_local_it() const
{ return priv_invalid_bucket()->end(); }
siterator priv_begin(size_type &bucket_num) const
{ return priv_begin(bucket_num, cache_begin_t()); }
siterator priv_begin(size_type &bucket_num, detail::bool_<false>) const
{
size_type n = 0;
size_type buckets_len = this->priv_buckets_len();
for (n = 0; n < buckets_len; ++n){
bucket_type &b = this->priv_buckets()[n];
if(!b.empty()){
bucket_num = n;
return b.begin();
}
}
bucket_num = n;
return priv_invalid_local_it();
}
siterator priv_begin(size_type &bucket_num, detail::bool_<true>) const
{
bucket_num = this->bucket_hash_equal_.cached_begin_ - this->priv_buckets();
if(this->bucket_hash_equal_.cached_begin_ == priv_invalid_bucket()){
return priv_invalid_local_it();
}
else{
return this->bucket_hash_equal_.cached_begin_->begin();
}
}
void priv_initialize_cache()
{ priv_initialize_cache(cache_begin_t()); }
void priv_initialize_cache(detail::bool_<true>)
{ this->bucket_hash_equal_.cached_begin_ = priv_invalid_bucket(); }
void priv_initialize_cache(detail::bool_<false>)
{}
void priv_insertion_update_cache(size_type insertion_bucket)
{ priv_insertion_update_cache(insertion_bucket, cache_begin_t()); }
void priv_insertion_update_cache(size_type insertion_bucket, detail::bool_<true>)
{
bucket_ptr p = priv_buckets() + insertion_bucket;
if(p < this->bucket_hash_equal_.cached_begin_){
this->bucket_hash_equal_.cached_begin_ = p;
}
}
void priv_insertion_update_cache(size_type, detail::bool_<false>)
{}
void priv_erasure_update_cache(size_type first_bucket, size_type last_bucket)
{ priv_erasure_update_cache(first_bucket, last_bucket, cache_begin_t()); }
void priv_erasure_update_cache(size_type first_bucket_num, size_type last_bucket_num, detail::bool_<true>)
{
//If the last bucket is the end, the cache must be updated
//to the last position if all
if(priv_get_cache_bucket_num() == first_bucket_num &&
priv_buckets()[first_bucket_num].empty() ){
priv_set_cache(priv_buckets() + last_bucket_num);
priv_erasure_update_cache();
}
}
void priv_erasure_update_cache(size_type, size_type, detail::bool_<false>)
{}
void priv_erasure_update_cache()
{ priv_erasure_update_cache(cache_begin_t()); }
void priv_erasure_update_cache(detail::bool_<true>)
{
if(constant_time_size && !size()){
priv_initialize_cache();
}
else{
size_type current_n = this->bucket_hash_equal_.cached_begin_ - priv_buckets();
for( const size_type num_buckets = this->priv_buckets_len()
; current_n < num_buckets
; ++current_n, ++this->bucket_hash_equal_.cached_begin_){
if(!this->bucket_hash_equal_.cached_begin_->empty()){
return;
}
}
priv_initialize_cache();
}
}
void priv_erasure_update_cache(detail::bool_<false>)
{}
void priv_swap_cache(detail::bool_<true>, hashtable_impl &other)
{
std::swap( this->bucket_hash_equal_.cached_begin_
, other.bucket_hash_equal_.cached_begin_);
}
void priv_swap_cache(detail::bool_<false>, hashtable_impl &)
{}
bucket_ptr priv_get_cache()
{ return priv_get_cache(cache_begin_t()); }
bucket_ptr priv_get_cache(detail::bool_<true>)
{ return this->bucket_hash_equal_.cached_begin_; }
bucket_ptr priv_get_cache(detail::bool_<false>)
{ return this->priv_buckets(); }
void priv_set_cache(bucket_ptr p)
{ priv_set_cache(p, cache_begin_t()); }
void priv_set_cache(bucket_ptr p, detail::bool_<true>)
{ this->bucket_hash_equal_.cached_begin_ = p; }
void priv_set_cache(bucket_ptr, detail::bool_<false>)
{}
size_type priv_get_cache_bucket_num()
{ return priv_get_cache_bucket_num(cache_begin_t()); }
size_type priv_get_cache_bucket_num(detail::bool_<true>)
{ return this->bucket_hash_equal_.cached_begin_ - this->priv_buckets(); }
size_type priv_get_cache_bucket_num(detail::bool_<false>)
{ return 0u; }
void priv_clear_buckets()
{
this->priv_clear_buckets
( priv_get_cache()
, this->priv_buckets_len() - (priv_get_cache() - priv_buckets()));
}
void priv_initialize_buckets()
{
this->priv_clear_buckets
( priv_buckets(), this->priv_buckets_len());
}
void priv_clear_buckets(bucket_ptr buckets_ptr, size_type buckets_len)
{
for(; buckets_len--; ++buckets_ptr){
if(safemode_or_autounlink){
priv_clear_group_nodes(*buckets_ptr, optimize_multikey_t());
buckets_ptr->clear_and_dispose(detail::init_disposer<node_algorithms>());
}
else{
buckets_ptr->clear();
}
}
priv_initialize_cache();
}
template<class KeyType, class KeyHasher, class KeyValueEqual>
siterator priv_find
( const KeyType &key, KeyHasher hash_func
, KeyValueEqual equal_func, size_type &bucket_number, std::size_t &h, siterator &previt) const
{
bucket_number = priv_hash_to_bucket((h = hash_func(key)));
if(constant_time_size && this->empty()){
return priv_invalid_local_it();
}
bucket_type &b = this->priv_buckets()[bucket_number];
previt = b.before_begin();
siterator it = previt;
++it;
while(it != b.end()){
const value_type &v = priv_value_from_slist_node(it.pointed_node());
if(compare_hash){
std::size_t vh = this->priv_stored_hash(v, store_hash_t());
if(h == vh && equal_func(key, v)){
return it;
}
}
else if(equal_func(key, v)){
return it;
}
if(optimize_multikey){
previt = bucket_type::s_iterator_to
(*priv_get_last_in_group(dcast_bucket_ptr(it.pointed_node())));
it = previt;
}
else{
previt = it;
}
++it;
}
return priv_invalid_local_it();
}
template<class KeyType, class KeyHasher, class KeyValueEqual>
std::pair<siterator, siterator> priv_equal_range
( const KeyType &key
, KeyHasher hash_func
, KeyValueEqual equal_func
, size_type &bucket_number_first
, size_type &bucket_number_second
, size_type &count) const
{
std::size_t h;
count = 0;
siterator prev;
//Let's see if the element is present
std::pair<siterator, siterator> to_return
( priv_find(key, hash_func, equal_func, bucket_number_first, h, prev)
, priv_invalid_local_it());
if(to_return.first == to_return.second){
bucket_number_second = bucket_number_first;
return to_return;
}
//If it's present, find the first that it's not equal in
//the same bucket
bucket_type &b = this->priv_buckets()[bucket_number_first];
siterator it = to_return.first;
if(optimize_multikey){
to_return.second = bucket_type::s_iterator_to
(*node_traits::get_next(priv_get_last_in_group
(dcast_bucket_ptr(it.pointed_node()))));
count = std::distance(it, to_return.second);
if(to_return.second != b.end()){
bucket_number_second = bucket_number_first;
return to_return;
}
}
else{
++count;
++it;
while(it != b.end()){
const value_type &v = priv_value_from_slist_node(it.pointed_node());
if(compare_hash){
std::size_t hv = this->priv_stored_hash(v, store_hash_t());
if(hv != h || !equal_func(key, v)){
to_return.second = it;
bucket_number_second = bucket_number_first;
return to_return;
}
}
else if(!equal_func(key, v)){
to_return.second = it;
bucket_number_second = bucket_number_first;
return to_return;
}
++it;
++count;
}
}
//If we reached the end, find the first, non-empty bucket
for(bucket_number_second = bucket_number_first+1
; bucket_number_second != this->priv_buckets_len()
; ++bucket_number_second){
bucket_type &b = this->priv_buckets()[bucket_number_second];
if(!b.empty()){
to_return.second = b.begin();
return to_return;
}
}
//Otherwise, return the end node
to_return.second = priv_invalid_local_it();
return to_return;
}
/// @endcond
};
/// @cond
template < class T
, bool UniqueKeys
, class O1 = none, class O2 = none
, class O3 = none, class O4 = none
, class O5 = none, class O6 = none
, class O7 = none, class O8 = none
, class O9 = none
>
struct make_hashtable_opt
{
typedef typename pack_options
< uset_defaults<T>, O1, O2, O3, O4, O5, O6, O7, O8, O9>::type packed_options;
//Real value traits must be calculated from options
typedef typename detail::get_value_traits
<T, typename packed_options::value_traits>::type value_traits;
/// @cond
static const bool external_value_traits =
detail::external_value_traits_is_true<value_traits>::value;
typedef typename detail::eval_if_c
< external_value_traits
, detail::eval_value_traits<value_traits>
, detail::identity<value_traits>
>::type real_value_traits;
typedef typename packed_options::bucket_traits specified_bucket_traits;
/// @endcond
//Real bucket traits must be calculated from options and calculated value_traits
typedef typename detail::get_slist_impl
<typename detail::reduced_slist_node_traits
<typename real_value_traits::node_traits>::type
>::type slist_impl;
typedef typename
detail::if_c< detail::is_same
< specified_bucket_traits
, default_bucket_traits
>::value
, detail::bucket_traits_impl<slist_impl>
, specified_bucket_traits
>::type real_bucket_traits;
typedef usetopt
< value_traits
, UniqueKeys
, typename packed_options::hash
, typename packed_options::equal
, typename packed_options::size_type
, packed_options::constant_time_size
, real_bucket_traits
, packed_options::power_2_buckets
, packed_options::cache_begin
, packed_options::compare_hash
> type;
};
/// @endcond
//! Helper metafunction to define a \c hashtable that yields to the same type when the
//! same options (either explicitly or implicitly) are used.
#ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED
template<class T, class ...Options>
#else
template<class T, class O1 = none, class O2 = none
, class O3 = none, class O4 = none
, class O5 = none, class O6 = none
, class O7 = none, class O8 = none
, class O9 = none
>
#endif
struct make_hashtable
{
/// @cond
typedef hashtable_impl
< typename make_hashtable_opt
<T, false, O1, O2, O3, O4, O5, O6, O7, O8, O9>::type
> implementation_defined;
/// @endcond
typedef implementation_defined type;
};
#ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
template<class T, class O1, class O2, class O3, class O4, class O5, class O6, class O7, class O8, class O9>
class hashtable
: public make_hashtable<T, O1, O2, O3, O4, O5, O6, O7, O8, O9>::type
{
typedef typename make_hashtable
<T, O1, O2, O3, O4, O5, O6, O7, O8, O9>::type Base;
public:
typedef typename Base::value_traits value_traits;
typedef typename Base::real_value_traits real_value_traits;
typedef typename Base::iterator iterator;
typedef typename Base::const_iterator const_iterator;
typedef typename Base::bucket_ptr bucket_ptr;
typedef typename Base::size_type size_type;
typedef typename Base::hasher hasher;
typedef typename Base::bucket_traits bucket_traits;
typedef typename Base::key_equal key_equal;
//Assert if passed value traits are compatible with the type
BOOST_STATIC_ASSERT((detail::is_same<typename real_value_traits::value_type, T>::value));
hashtable ( const bucket_traits &b_traits
, const hasher & hash_func = hasher()
, const key_equal &equal_func = key_equal()
, const value_traits &v_traits = value_traits())
: Base(b_traits, hash_func, equal_func, v_traits)
{}
};
#endif
} //namespace intrusive
} //namespace boost
#include <boost/intrusive/detail/config_end.hpp>
#endif //BOOST_INTRUSIVE_HASHTABLE_HPP