boost/math/special_functions/next.hpp
// (C) Copyright John Maddock 2008. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_SPECIAL_NEXT_HPP #define BOOST_MATH_SPECIAL_NEXT_HPP #ifdef _MSC_VER #pragma once #endif #include <boost/math/policies/error_handling.hpp> #include <boost/math/special_functions/fpclassify.hpp> #include <boost/math/special_functions/sign.hpp> #ifdef BOOST_MSVC #include <float.h> #endif namespace boost{ namespace math{ namespace detail{ template <class T> inline T get_smallest_value(mpl::true_ const&) { return std::numeric_limits<T>::denorm_min(); } template <class T> inline T get_smallest_value(mpl::false_ const&) { return tools::min_value<T>(); } template <class T> inline T get_smallest_value() { #if defined(BOOST_MSVC) && (BOOST_MSVC <= 1310) return get_smallest_value<T>(mpl::bool_<std::numeric_limits<T>::is_specialized && (std::numeric_limits<T>::has_denorm == 1)>()); #else return get_smallest_value<T>(mpl::bool_<std::numeric_limits<T>::is_specialized && (std::numeric_limits<T>::has_denorm == std::denorm_present)>()); #endif } } template <class T, class Policy> T float_next(const T& val, const Policy& pol) { BOOST_MATH_STD_USING int expon; static const char* function = "float_next<%1%>(%1%)"; if(!(boost::math::isfinite)(val)) return policies::raise_domain_error<T>( function, "Argument must be finite, but got %1%", val, pol); if(val >= tools::max_value<T>()) return policies::raise_overflow_error<T>(function, 0, pol); if(val == 0) return detail::get_smallest_value<T>(); if(-0.5f == frexp(val, &expon)) --expon; // reduce exponent when val is a power of two, and negative. T diff = ldexp(T(1), expon - tools::digits<T>()); if(diff == 0) diff = detail::get_smallest_value<T>(); return val + diff; } #ifdef BOOST_MSVC template <class Policy> inline double float_next(const double& val, const Policy& pol) { static const char* function = "float_next<%1%>(%1%)"; if(!(boost::math::isfinite)(val)) return policies::raise_domain_error<double>( function, "Argument must be finite, but got %1%", val, pol); if(val >= tools::max_value<double>()) return policies::raise_overflow_error<double>(function, 0, pol); return ::_nextafter(val, tools::max_value<double>()); } #endif template <class T> inline T float_next(const T& val) { return float_next(val, policies::policy<>()); } template <class T, class Policy> T float_prior(const T& val, const Policy& pol) { BOOST_MATH_STD_USING int expon; static const char* function = "float_prior<%1%>(%1%)"; if(!(boost::math::isfinite)(val)) return policies::raise_domain_error<T>( function, "Argument must be finite, but got %1%", val, pol); if(val <= -tools::max_value<T>()) return -policies::raise_overflow_error<T>(function, 0, pol); if(val == 0) return -detail::get_smallest_value<T>(); T remain = frexp(val, &expon); if(remain == 0.5) --expon; // when val is a power of two we must reduce the exponent T diff = ldexp(T(1), expon - tools::digits<T>()); if(diff == 0) diff = detail::get_smallest_value<T>(); return val - diff; } #ifdef BOOST_MSVC template <class Policy> inline double float_prior(const double& val, const Policy& pol) { static const char* function = "float_prior<%1%>(%1%)"; if(!(boost::math::isfinite)(val)) return policies::raise_domain_error<double>( function, "Argument must be finite, but got %1%", val, pol); if(val <= -tools::max_value<double>()) return -policies::raise_overflow_error<double>(function, 0, pol); return ::_nextafter(val, -tools::max_value<double>()); } #endif template <class T> inline T float_prior(const T& val) { return float_prior(val, policies::policy<>()); } template <class T, class Policy> inline T nextafter(const T& val, const T& direction, const Policy& pol) { return val < direction ? boost::math::float_next(val, pol) : val == direction ? val : boost::math::float_prior(val, pol); } template <class T> inline T nextafter(const T& val, const T& direction) { return nextafter(val, direction, policies::policy<>()); } template <class T, class Policy> T float_distance(const T& a, const T& b, const Policy& pol) { BOOST_MATH_STD_USING // // Error handling: // static const char* function = "float_distance<%1%>(%1%, %1%)"; if(!(boost::math::isfinite)(a)) return policies::raise_domain_error<T>( function, "Argument a must be finite, but got %1%", a, pol); if(!(boost::math::isfinite)(b)) return policies::raise_domain_error<T>( function, "Argument b must be finite, but got %1%", b, pol); // // Special cases: // if(a > b) return -float_distance(b, a); if(a == b) return 0; if(a == 0) return 1 + fabs(float_distance(boost::math::sign(b) * detail::get_smallest_value<T>(), b, pol)); if(b == 0) return 1 + fabs(float_distance(boost::math::sign(a) * detail::get_smallest_value<T>(), a, pol)); if(boost::math::sign(a) != boost::math::sign(b)) return 2 + fabs(float_distance(boost::math::sign(b) * detail::get_smallest_value<T>(), b, pol)) + fabs(float_distance(boost::math::sign(a) * detail::get_smallest_value<T>(), a, pol)); // // By the time we get here, both a and b must have the same sign, we want // b > a and both postive for the following logic: // if(a < 0) return float_distance(-b, -a); BOOST_ASSERT(a >= 0); BOOST_ASSERT(b >= a); BOOST_MATH_STD_USING int expon; // // Note that if a is a denorm then the usual formula fails // because we actually have fewer than tools::digits<T>() // significant bits in the representation: // frexp(((boost::math::fpclassify)(a) == FP_SUBNORMAL) ? tools::min_value<T>() : a, &expon); T upper = ldexp(T(1), expon); T result = 0; expon = tools::digits<T>() - expon; // // If b is greater than upper, then we *must* split the calculation // as the size of the ULP changes with each order of magnitude change: // if(b > upper) { result = float_distance(upper, b); } // // Use compensated double-double addition to avoid rounding // errors in the subtraction: // T mb = -(std::min)(upper, b); T x = a + mb; T z = x - a; T y = (a - (x - z)) + (mb - z); if(x < 0) { x = -x; y = -y; } result += ldexp(x, expon) + ldexp(y, expon); // // Result must be an integer: // BOOST_ASSERT(result == floor(result)); return result; } template <class T> T float_distance(const T& a, const T& b) { return boost::math::float_distance(a, b, policies::policy<>()); } template <class T, class Policy> T float_advance(T val, int distance, const Policy& pol) { // // Error handling: // static const char* function = "float_advance<%1%>(%1%, int)"; if(!(boost::math::isfinite)(val)) return policies::raise_domain_error<T>( function, "Argument val must be finite, but got %1%", val, pol); if(val < 0) return -float_advance(-val, -distance, pol); if(distance == 0) return val; if(distance == 1) return float_next(val, pol); if(distance == -1) return float_prior(val, pol); BOOST_MATH_STD_USING int expon; frexp(val, &expon); T limit = ldexp((distance < 0 ? T(0.5f) : T(1)), expon); if(val <= tools::min_value<T>()) { limit = sign(T(distance)) * tools::min_value<T>(); } T limit_distance = float_distance(val, limit); while(fabs(limit_distance) < abs(distance)) { distance -= itrunc(limit_distance); val = limit; if(distance < 0) { limit /= 2; expon--; } else { limit *= 2; expon++; } limit_distance = float_distance(val, limit); } if((0.5f == frexp(val, &expon)) && (distance < 0)) --expon; T diff = 0; if(val != 0) diff = distance * ldexp(T(1), expon - tools::digits<T>()); if(diff == 0) diff = distance * detail::get_smallest_value<T>(); return val += diff; } template <class T> inline T float_advance(const T& val, int distance) { return boost::math::float_advance(val, distance, policies::policy<>()); } }} // namespaces #endif // BOOST_MATH_SPECIAL_NEXT_HPP