boost/interprocess/containers/container/flat_set.hpp
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/container for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_CONTAINERS_FLAT_SET_HPP
#define BOOST_CONTAINERS_FLAT_SET_HPP
#if (defined _MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif
#include <boost/interprocess/containers/container/detail/config_begin.hpp>
#include <boost/interprocess/containers/container/detail/workaround.hpp>
#include <boost/interprocess/containers/container/containers_fwd.hpp>
#include <utility>
#include <functional>
#include <memory>
#include <boost/interprocess/containers/container/detail/flat_tree.hpp>
#include <boost/interprocess/containers/container/detail/mpl.hpp>
#include <boost/interprocess/detail/move.hpp>
#ifdef BOOST_INTERPROCESS_DOXYGEN_INVOKED
namespace boost {
namespace interprocess {
#else
namespace boost {
namespace interprocess_container {
#endif
/// @cond
// Forward declarations of operators < and ==, needed for friend declaration.
template <class T, class Pred, class Alloc>
class flat_set;
template <class T, class Pred, class Alloc>
inline bool operator==(const flat_set<T,Pred,Alloc>& x,
const flat_set<T,Pred,Alloc>& y);
template <class T, class Pred, class Alloc>
inline bool operator<(const flat_set<T,Pred,Alloc>& x,
const flat_set<T,Pred,Alloc>& y);
/// @endcond
//! flat_set is a Sorted Associative Container that stores objects of type Key.
//! flat_set is a Simple Associative Container, meaning that its value type,
//! as well as its key type, is Key. It is also a Unique Associative Container,
//! meaning that no two elements are the same.
//!
//! flat_set is similar to std::set but it's implemented like an ordered vector.
//! This means that inserting a new element into a flat_set invalidates
//! previous iterators and references
//!
//! Erasing an element of a flat_set invalidates iterators and references
//! pointing to elements that come after (their keys are bigger) the erased element.
template <class T, class Pred, class Alloc>
class flat_set
{
/// @cond
private:
typedef containers_detail::flat_tree<T, T, containers_detail::identity<T>, Pred, Alloc> tree_t;
tree_t m_flat_tree; // flat tree representing flat_set
/// @endcond
public:
BOOST_INTERPROCESS_ENABLE_MOVE_EMULATION(flat_set)
// typedefs:
typedef typename tree_t::key_type key_type;
typedef typename tree_t::value_type value_type;
typedef typename tree_t::pointer pointer;
typedef typename tree_t::const_pointer const_pointer;
typedef typename tree_t::reference reference;
typedef typename tree_t::const_reference const_reference;
typedef typename tree_t::key_compare key_compare;
typedef typename tree_t::value_compare value_compare;
typedef typename tree_t::iterator iterator;
typedef typename tree_t::const_iterator const_iterator;
typedef typename tree_t::reverse_iterator reverse_iterator;
typedef typename tree_t::const_reverse_iterator const_reverse_iterator;
typedef typename tree_t::size_type size_type;
typedef typename tree_t::difference_type difference_type;
typedef typename tree_t::allocator_type allocator_type;
typedef typename tree_t::stored_allocator_type stored_allocator_type;
//! <b>Effects</b>: Constructs an empty flat_map using the specified
//! comparison object and allocator.
//!
//! <b>Complexity</b>: Constant.
explicit flat_set(const Pred& comp = Pred(),
const allocator_type& a = allocator_type())
: m_flat_tree(comp, a)
{}
//! <b>Effects</b>: Constructs an empty map using the specified comparison object and
//! allocator, and inserts elements from the range [first ,last ).
//!
//! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using
//! comp and otherwise N logN, where N is last - first.
template <class InputIterator>
flat_set(InputIterator first, InputIterator last,
const Pred& comp = Pred(),
const allocator_type& a = allocator_type())
: m_flat_tree(comp, a)
{ m_flat_tree.insert_unique(first, last); }
//! <b>Effects</b>: Copy constructs a map.
//!
//! <b>Complexity</b>: Linear in x.size().
flat_set(const flat_set<T,Pred,Alloc>& x)
: m_flat_tree(x.m_flat_tree) {}
//! <b>Effects</b>: Move constructs a map. Constructs *this using x's resources.
//!
//! <b>Complexity</b>: Construct.
//!
//! <b>Postcondition</b>: x is emptied.
flat_set(BOOST_INTERPROCESS_RV_REF(flat_set) mx)
: m_flat_tree(boost::interprocess::move(mx.m_flat_tree))
{}
//! <b>Effects</b>: Makes *this a copy of x.
//!
//! <b>Complexity</b>: Linear in x.size().
flat_set<T,Pred,Alloc>& operator=(const flat_set<T, Pred, Alloc>& x)
{ m_flat_tree = x.m_flat_tree; return *this; }
//! <b>Effects</b>: Makes *this a copy of x.
//!
//! <b>Complexity</b>: Linear in x.size().
flat_set<T,Pred,Alloc>& operator=(BOOST_INTERPROCESS_RV_REF(flat_set) mx)
{ m_flat_tree = boost::interprocess::move(mx.m_flat_tree); return *this; }
//! <b>Effects</b>: Returns the comparison object out
//! of which a was constructed.
//!
//! <b>Complexity</b>: Constant.
key_compare key_comp() const
{ return m_flat_tree.key_comp(); }
//! <b>Effects</b>: Returns an object of value_compare constructed out
//! of the comparison object.
//!
//! <b>Complexity</b>: Constant.
value_compare value_comp() const
{ return m_flat_tree.key_comp(); }
//! <b>Effects</b>: Returns a copy of the Allocator that
//! was passed to the object's constructor.
//!
//! <b>Complexity</b>: Constant.
allocator_type get_allocator() const
{ return m_flat_tree.get_allocator(); }
const stored_allocator_type &get_stored_allocator() const
{ return m_flat_tree.get_stored_allocator(); }
stored_allocator_type &get_stored_allocator()
{ return m_flat_tree.get_stored_allocator(); }
//! <b>Effects</b>: Returns an iterator to the first element contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator begin()
{ return m_flat_tree.begin(); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator begin() const
{ return m_flat_tree.begin(); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cbegin() const
{ return m_flat_tree.cbegin(); }
//! <b>Effects</b>: Returns an iterator to the end of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator end()
{ return m_flat_tree.end(); }
//! <b>Effects</b>: Returns a const_iterator to the end of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator end() const
{ return m_flat_tree.end(); }
//! <b>Effects</b>: Returns a const_iterator to the end of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cend() const
{ return m_flat_tree.cend(); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rbegin()
{ return m_flat_tree.rbegin(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rbegin() const
{ return m_flat_tree.rbegin(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator crbegin() const
{ return m_flat_tree.crbegin(); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rend()
{ return m_flat_tree.rend(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rend() const
{ return m_flat_tree.rend(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator crend() const
{ return m_flat_tree.crend(); }
//! <b>Effects</b>: Returns true if the container contains no elements.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
bool empty() const
{ return m_flat_tree.empty(); }
//! <b>Effects</b>: Returns the number of the elements contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type size() const
{ return m_flat_tree.size(); }
//! <b>Effects</b>: Returns the largest possible size of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type max_size() const
{ return m_flat_tree.max_size(); }
//! <b>Effects</b>: Swaps the contents of *this and x.
//! If this->allocator_type() != x.allocator_type() allocators are also swapped.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
void swap(flat_set& x)
{ m_flat_tree.swap(x.m_flat_tree); }
//! <b>Effects</b>: Inserts x if and only if there is no element in the container
//! with key equivalent to the key of x.
//!
//! <b>Returns</b>: The bool component of the returned pair is true if and only
//! if the insertion takes place, and the iterator component of the pair
//! points to the element with key equivalent to the key of x.
//!
//! <b>Complexity</b>: Logarithmic search time plus linear insertion
//! to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
std::pair<iterator,bool> insert(const value_type& x)
{ return m_flat_tree.insert_unique(x); }
//! <b>Effects</b>: Inserts a new value_type move constructed from the pair if and
//! only if there is no element in the container with key equivalent to the key of x.
//!
//! <b>Returns</b>: The bool component of the returned pair is true if and only
//! if the insertion takes place, and the iterator component of the pair
//! points to the element with key equivalent to the key of x.
//!
//! <b>Complexity</b>: Logarithmic search time plus linear insertion
//! to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
std::pair<iterator,bool> insert(BOOST_INTERPROCESS_RV_REF(value_type) x)
{ return m_flat_tree.insert_unique(boost::interprocess::move(x)); }
//! <b>Effects</b>: Inserts a copy of x in the container if and only if there is
//! no element in the container with key equivalent to the key of x.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
//! to the key of x.
//!
//! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
//! right before p) plus insertion linear to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
iterator insert(const_iterator position, const value_type& x)
{ return m_flat_tree.insert_unique(position, x); }
//! <b>Effects</b>: Inserts an element move constructed from x in the container.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent to the key of x.
//!
//! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
//! right before p) plus insertion linear to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
iterator insert(const_iterator position, BOOST_INTERPROCESS_RV_REF(value_type) x)
{ return m_flat_tree.insert_unique(position, boost::interprocess::move(x)); }
//! <b>Requires</b>: i, j are not iterators into *this.
//!
//! <b>Effects</b>: inserts each element from the range [i,j) if and only
//! if there is no element with key equivalent to the key of that element.
//!
//! <b>Complexity</b>: N log(size()+N) (N is the distance from i to j)
//! search time plus N*size() insertion time.
//!
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
template <class InputIterator>
void insert(InputIterator first, InputIterator last)
{ m_flat_tree.insert_unique(first, last); }
#if defined(BOOST_CONTAINERS_PERFECT_FORWARDING) || defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... if and only if there is no element in the container
//! with key equivalent to the key of x.
//!
//! <b>Returns</b>: The bool component of the returned pair is true if and only
//! if the insertion takes place, and the iterator component of the pair
//! points to the element with key equivalent to the key of x.
//!
//! <b>Complexity</b>: Logarithmic search time plus linear insertion
//! to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
template <class... Args>
iterator emplace(Args&&... args)
{ return m_flat_tree.emplace_unique(boost::interprocess::forward<Args>(args)...); }
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... in the container if and only if there is
//! no element in the container with key equivalent to the key of x.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
//! to the key of x.
//!
//! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
//! right before p) plus insertion linear to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
template <class... Args>
iterator emplace_hint(const_iterator hint, Args&&... args)
{ return m_flat_tree.emplace_hint_unique(hint, boost::interprocess::forward<Args>(args)...); }
#else //#ifdef BOOST_CONTAINERS_PERFECT_FORWARDING
iterator emplace()
{ return m_flat_tree.emplace_unique(); }
iterator emplace_hint(const_iterator hint)
{ return m_flat_tree.emplace_hint_unique(hint); }
#define BOOST_PP_LOCAL_MACRO(n) \
template<BOOST_PP_ENUM_PARAMS(n, class P)> \
iterator emplace(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \
{ return m_flat_tree.emplace_unique(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _)); } \
\
template<BOOST_PP_ENUM_PARAMS(n, class P)> \
iterator emplace_hint(const_iterator hint, BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \
{ return m_flat_tree.emplace_hint_unique(hint, BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _)); }\
//!
#define BOOST_PP_LOCAL_LIMITS (1, BOOST_CONTAINERS_MAX_CONSTRUCTOR_PARAMETERS)
#include BOOST_PP_LOCAL_ITERATE()
#endif //#ifdef BOOST_CONTAINERS_PERFECT_FORWARDING
//! <b>Effects</b>: Erases the element pointed to by position.
//!
//! <b>Returns</b>: Returns an iterator pointing to the element immediately
//! following q prior to the element being erased. If no such element exists,
//! returns end().
//!
//! <b>Complexity</b>: Linear to the elements with keys bigger than position
//!
//! <b>Note</b>: Invalidates elements with keys
//! not less than the erased element.
iterator erase(const_iterator position)
{ return m_flat_tree.erase(position); }
//! <b>Effects</b>: Erases all elements in the container with key equivalent to x.
//!
//! <b>Returns</b>: Returns the number of erased elements.
//!
//! <b>Complexity</b>: Logarithmic search time plus erasure time
//! linear to the elements with bigger keys.
size_type erase(const key_type& x)
{ return m_flat_tree.erase(x); }
//! <b>Effects</b>: Erases all the elements in the range [first, last).
//!
//! <b>Returns</b>: Returns last.
//!
//! <b>Complexity</b>: size()*N where N is the distance from first to last.
//!
//! <b>Complexity</b>: Logarithmic search time plus erasure time
//! linear to the elements with bigger keys.
iterator erase(const_iterator first, const_iterator last)
{ return m_flat_tree.erase(first, last); }
//! <b>Effects</b>: erase(a.begin(),a.end()).
//!
//! <b>Postcondition</b>: size() == 0.
//!
//! <b>Complexity</b>: linear in size().
void clear()
{ m_flat_tree.clear(); }
//! <b>Effects</b>: Tries to deallocate the excess of memory created
// with previous allocations. The size of the vector is unchanged
//!
//! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to size().
void shrink_to_fit()
{ m_flat_tree.shrink_to_fit(); }
//! <b>Returns</b>: An iterator pointing to an element with the key
//! equivalent to x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic.
iterator find(const key_type& x)
{ return m_flat_tree.find(x); }
//! <b>Returns</b>: A const_iterator pointing to an element with the key
//! equivalent to x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic.s
const_iterator find(const key_type& x) const
{ return m_flat_tree.find(x); }
//! <b>Returns</b>: The number of elements with key equivalent to x.
//!
//! <b>Complexity</b>: log(size())+count(k)
size_type count(const key_type& x) const
{ return m_flat_tree.find(x) == m_flat_tree.end() ? 0 : 1; }
//! <b>Returns</b>: An iterator pointing to the first element with key not less
//! than k, or a.end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
iterator lower_bound(const key_type& x)
{ return m_flat_tree.lower_bound(x); }
//! <b>Returns</b>: A const iterator pointing to the first element with key not
//! less than k, or a.end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
const_iterator lower_bound(const key_type& x) const
{ return m_flat_tree.lower_bound(x); }
//! <b>Returns</b>: An iterator pointing to the first element with key not less
//! than x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
iterator upper_bound(const key_type& x)
{ return m_flat_tree.upper_bound(x); }
//! <b>Returns</b>: A const iterator pointing to the first element with key not
//! less than x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
const_iterator upper_bound(const key_type& x) const
{ return m_flat_tree.upper_bound(x); }
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
//!
//! <b>Complexity</b>: Logarithmic
std::pair<const_iterator, const_iterator>
equal_range(const key_type& x) const
{ return m_flat_tree.equal_range(x); }
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
//!
//! <b>Complexity</b>: Logarithmic
std::pair<iterator,iterator>
equal_range(const key_type& x)
{ return m_flat_tree.equal_range(x); }
//! <b>Effects</b>: Number of elements for which memory has been allocated.
//! capacity() is always greater than or equal to size().
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type capacity() const
{ return m_flat_tree.capacity(); }
//! <b>Effects</b>: If n is less than or equal to capacity(), this call has no
//! effect. Otherwise, it is a request for allocation of additional memory.
//! If the request is successful, then capacity() is greater than or equal to
//! n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
//!
//! <b>Throws</b>: If memory allocation allocation throws or T's copy constructor throws.
//!
//! <b>Note</b>: If capacity() is less than "count", iterators and references to
//! to values might be invalidated.
void reserve(size_type count)
{ m_flat_tree.reserve(count); }
/// @cond
template <class K1, class C1, class A1>
friend bool operator== (const flat_set<K1,C1,A1>&, const flat_set<K1,C1,A1>&);
template <class K1, class C1, class A1>
friend bool operator< (const flat_set<K1,C1,A1>&, const flat_set<K1,C1,A1>&);
/// @endcond
};
template <class T, class Pred, class Alloc>
inline bool operator==(const flat_set<T,Pred,Alloc>& x,
const flat_set<T,Pred,Alloc>& y)
{ return x.m_flat_tree == y.m_flat_tree; }
template <class T, class Pred, class Alloc>
inline bool operator<(const flat_set<T,Pred,Alloc>& x,
const flat_set<T,Pred,Alloc>& y)
{ return x.m_flat_tree < y.m_flat_tree; }
template <class T, class Pred, class Alloc>
inline bool operator!=(const flat_set<T,Pred,Alloc>& x,
const flat_set<T,Pred,Alloc>& y)
{ return !(x == y); }
template <class T, class Pred, class Alloc>
inline bool operator>(const flat_set<T,Pred,Alloc>& x,
const flat_set<T,Pred,Alloc>& y)
{ return y < x; }
template <class T, class Pred, class Alloc>
inline bool operator<=(const flat_set<T,Pred,Alloc>& x,
const flat_set<T,Pred,Alloc>& y)
{ return !(y < x); }
template <class T, class Pred, class Alloc>
inline bool operator>=(const flat_set<T,Pred,Alloc>& x,
const flat_set<T,Pred,Alloc>& y)
{ return !(x < y); }
template <class T, class Pred, class Alloc>
inline void swap(flat_set<T,Pred,Alloc>& x, flat_set<T,Pred,Alloc>& y)
{ x.swap(y); }
/// @cond
} //namespace interprocess_container {
namespace interprocess {
//!has_trivial_destructor_after_move<> == true_type
//!specialization for optimizations
template <class T, class C, class A>
struct has_trivial_destructor_after_move<boost::interprocess_container::flat_set<T, C, A> >
{
static const bool value = has_trivial_destructor<A>::value &&has_trivial_destructor<C>::value;
};
} //namespace interprocess {
namespace interprocess_container {
// Forward declaration of operators < and ==, needed for friend declaration.
template <class T, class Pred, class Alloc>
class flat_multiset;
template <class T, class Pred, class Alloc>
inline bool operator==(const flat_multiset<T,Pred,Alloc>& x,
const flat_multiset<T,Pred,Alloc>& y);
template <class T, class Pred, class Alloc>
inline bool operator<(const flat_multiset<T,Pred,Alloc>& x,
const flat_multiset<T,Pred,Alloc>& y);
/// @endcond
//! flat_multiset is a Sorted Associative Container that stores objects of type Key.
//! flat_multiset is a Simple Associative Container, meaning that its value type,
//! as well as its key type, is Key.
//! flat_Multiset can store multiple copies of the same key value.
//!
//! flat_multiset is similar to std::multiset but it's implemented like an ordered vector.
//! This means that inserting a new element into a flat_multiset invalidates
//! previous iterators and references
//!
//! Erasing an element of a flat_multiset invalidates iterators and references
//! pointing to elements that come after (their keys are equal or bigger) the erased element.
template <class T, class Pred, class Alloc>
class flat_multiset
{
/// @cond
private:
typedef containers_detail::flat_tree<T, T, containers_detail::identity<T>, Pred, Alloc> tree_t;
tree_t m_flat_tree; // flat tree representing flat_multiset
/// @endcond
public:
BOOST_INTERPROCESS_ENABLE_MOVE_EMULATION(flat_multiset)
// typedefs:
typedef typename tree_t::key_type key_type;
typedef typename tree_t::value_type value_type;
typedef typename tree_t::pointer pointer;
typedef typename tree_t::const_pointer const_pointer;
typedef typename tree_t::reference reference;
typedef typename tree_t::const_reference const_reference;
typedef typename tree_t::key_compare key_compare;
typedef typename tree_t::value_compare value_compare;
typedef typename tree_t::iterator iterator;
typedef typename tree_t::const_iterator const_iterator;
typedef typename tree_t::reverse_iterator reverse_iterator;
typedef typename tree_t::const_reverse_iterator const_reverse_iterator;
typedef typename tree_t::size_type size_type;
typedef typename tree_t::difference_type difference_type;
typedef typename tree_t::allocator_type allocator_type;
typedef typename tree_t::stored_allocator_type stored_allocator_type;
// allocation/deallocation
explicit flat_multiset(const Pred& comp = Pred(),
const allocator_type& a = allocator_type())
: m_flat_tree(comp, a) {}
template <class InputIterator>
flat_multiset(InputIterator first, InputIterator last,
const Pred& comp = Pred(),
const allocator_type& a = allocator_type())
: m_flat_tree(comp, a)
{ m_flat_tree.insert_equal(first, last); }
flat_multiset(const flat_multiset<T,Pred,Alloc>& x)
: m_flat_tree(x.m_flat_tree) {}
flat_multiset(BOOST_INTERPROCESS_RV_REF(flat_multiset) x)
: m_flat_tree(boost::interprocess::move(x.m_flat_tree))
{}
flat_multiset<T,Pred,Alloc>& operator=(const flat_multiset<T,Pred,Alloc>& x)
{ m_flat_tree = x.m_flat_tree; return *this; }
flat_multiset<T,Pred,Alloc>& operator=(BOOST_INTERPROCESS_RV_REF(flat_multiset) mx)
{ m_flat_tree = boost::interprocess::move(mx.m_flat_tree); return *this; }
//! <b>Effects</b>: Returns the comparison object out
//! of which a was constructed.
//!
//! <b>Complexity</b>: Constant.
key_compare key_comp() const
{ return m_flat_tree.key_comp(); }
//! <b>Effects</b>: Returns an object of value_compare constructed out
//! of the comparison object.
//!
//! <b>Complexity</b>: Constant.
value_compare value_comp() const
{ return m_flat_tree.key_comp(); }
//! <b>Effects</b>: Returns a copy of the Allocator that
//! was passed to the object's constructor.
//!
//! <b>Complexity</b>: Constant.
allocator_type get_allocator() const
{ return m_flat_tree.get_allocator(); }
const stored_allocator_type &get_stored_allocator() const
{ return m_flat_tree.get_stored_allocator(); }
stored_allocator_type &get_stored_allocator()
{ return m_flat_tree.get_stored_allocator(); }
//! <b>Effects</b>: Returns an iterator to the first element contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator begin()
{ return m_flat_tree.begin(); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator begin() const
{ return m_flat_tree.begin(); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cbegin() const
{ return m_flat_tree.cbegin(); }
//! <b>Effects</b>: Returns an iterator to the end of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator end()
{ return m_flat_tree.end(); }
//! <b>Effects</b>: Returns a const_iterator to the end of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator end() const
{ return m_flat_tree.end(); }
//! <b>Effects</b>: Returns a const_iterator to the end of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cend() const
{ return m_flat_tree.cend(); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rbegin()
{ return m_flat_tree.rbegin(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rbegin() const
{ return m_flat_tree.rbegin(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator crbegin() const
{ return m_flat_tree.crbegin(); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rend()
{ return m_flat_tree.rend(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rend() const
{ return m_flat_tree.rend(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator crend() const
{ return m_flat_tree.crend(); }
//! <b>Effects</b>: Returns true if the container contains no elements.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
bool empty() const
{ return m_flat_tree.empty(); }
//! <b>Effects</b>: Returns the number of the elements contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type size() const
{ return m_flat_tree.size(); }
//! <b>Effects</b>: Returns the largest possible size of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type max_size() const
{ return m_flat_tree.max_size(); }
//! <b>Effects</b>: Swaps the contents of *this and x.
//! If this->allocator_type() != x.allocator_type() allocators are also swapped.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
void swap(flat_multiset& x)
{ m_flat_tree.swap(x.m_flat_tree); }
//! <b>Effects</b>: Inserts x and returns the iterator pointing to the
//! newly inserted element.
//!
//! <b>Complexity</b>: Logarithmic search time plus linear insertion
//! to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
iterator insert(const value_type& x)
{ return m_flat_tree.insert_equal(x); }
//! <b>Effects</b>: Inserts a new value_type move constructed from x
//! and returns the iterator pointing to the newly inserted element.
//!
//! <b>Complexity</b>: Logarithmic search time plus linear insertion
//! to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
iterator insert(BOOST_INTERPROCESS_RV_REF(value_type) x)
{ return m_flat_tree.insert_equal(boost::interprocess::move(x)); }
//! <b>Effects</b>: Inserts a copy of x in the container.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
//! to the key of x.
//!
//! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
//! right before p) plus insertion linear to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
iterator insert(const_iterator position, const value_type& x)
{ return m_flat_tree.insert_equal(position, x); }
//! <b>Effects</b>: Inserts a new value move constructed from x in the container.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
//! to the key of x.
//!
//! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
//! right before p) plus insertion linear to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
iterator insert(const_iterator position, BOOST_INTERPROCESS_RV_REF(value_type) x)
{ return m_flat_tree.insert_equal(position, boost::interprocess::move(x)); }
//! <b>Requires</b>: i, j are not iterators into *this.
//!
//! <b>Effects</b>: inserts each element from the range [i,j) .
//!
//! <b>Complexity</b>: N log(size()+N) (N is the distance from i to j)
//! search time plus N*size() insertion time.
//!
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
template <class InputIterator>
void insert(InputIterator first, InputIterator last)
{ m_flat_tree.insert_equal(first, last); }
#if defined(BOOST_CONTAINERS_PERFECT_FORWARDING) || defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... and returns the iterator pointing to the
//! newly inserted element.
//!
//! <b>Complexity</b>: Logarithmic search time plus linear insertion
//! to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
template <class... Args>
iterator emplace(Args&&... args)
{ return m_flat_tree.emplace_equal(boost::interprocess::forward<Args>(args)...); }
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... in the container.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
//! to the key of x.
//!
//! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
//! right before p) plus insertion linear to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
template <class... Args>
iterator emplace_hint(const_iterator hint, Args&&... args)
{ return m_flat_tree.emplace_hint_equal(hint, boost::interprocess::forward<Args>(args)...); }
#else //#ifdef BOOST_CONTAINERS_PERFECT_FORWARDING
iterator emplace()
{ return m_flat_tree.emplace_equal(); }
iterator emplace_hint(const_iterator hint)
{ return m_flat_tree.emplace_hint_equal(hint); }
#define BOOST_PP_LOCAL_MACRO(n) \
template<BOOST_PP_ENUM_PARAMS(n, class P)> \
iterator emplace(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \
{ return m_flat_tree.emplace_equal(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _)); } \
\
template<BOOST_PP_ENUM_PARAMS(n, class P)> \
iterator emplace_hint(const_iterator hint, BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \
{ return m_flat_tree.emplace_hint_equal(hint, BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _)); } \
//!
#define BOOST_PP_LOCAL_LIMITS (1, BOOST_CONTAINERS_MAX_CONSTRUCTOR_PARAMETERS)
#include BOOST_PP_LOCAL_ITERATE()
#endif //#ifdef BOOST_CONTAINERS_PERFECT_FORWARDING
//! <b>Effects</b>: Erases the element pointed to by position.
//!
//! <b>Returns</b>: Returns an iterator pointing to the element immediately
//! following q prior to the element being erased. If no such element exists,
//! returns end().
//!
//! <b>Complexity</b>: Linear to the elements with keys bigger than position
//!
//! <b>Note</b>: Invalidates elements with keys
//! not less than the erased element.
iterator erase(const_iterator position)
{ return m_flat_tree.erase(position); }
//! <b>Effects</b>: Erases all elements in the container with key equivalent to x.
//!
//! <b>Returns</b>: Returns the number of erased elements.
//!
//! <b>Complexity</b>: Logarithmic search time plus erasure time
//! linear to the elements with bigger keys.
size_type erase(const key_type& x)
{ return m_flat_tree.erase(x); }
//! <b>Effects</b>: Erases all the elements in the range [first, last).
//!
//! <b>Returns</b>: Returns last.
//!
//! <b>Complexity</b>: size()*N where N is the distance from first to last.
//!
//! <b>Complexity</b>: Logarithmic search time plus erasure time
//! linear to the elements with bigger keys.
iterator erase(const_iterator first, const_iterator last)
{ return m_flat_tree.erase(first, last); }
//! <b>Effects</b>: erase(a.begin(),a.end()).
//!
//! <b>Postcondition</b>: size() == 0.
//!
//! <b>Complexity</b>: linear in size().
void clear()
{ m_flat_tree.clear(); }
//! <b>Effects</b>: Tries to deallocate the excess of memory created
// with previous allocations. The size of the vector is unchanged
//!
//! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to size().
void shrink_to_fit()
{ m_flat_tree.shrink_to_fit(); }
//! <b>Returns</b>: An iterator pointing to an element with the key
//! equivalent to x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic.
iterator find(const key_type& x)
{ return m_flat_tree.find(x); }
//! <b>Returns</b>: A const_iterator pointing to an element with the key
//! equivalent to x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic.s
const_iterator find(const key_type& x) const
{ return m_flat_tree.find(x); }
//! <b>Returns</b>: The number of elements with key equivalent to x.
//!
//! <b>Complexity</b>: log(size())+count(k)
size_type count(const key_type& x) const
{ return m_flat_tree.count(x); }
//! <b>Returns</b>: An iterator pointing to the first element with key not less
//! than k, or a.end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
iterator lower_bound(const key_type& x)
{ return m_flat_tree.lower_bound(x); }
//! <b>Returns</b>: A const iterator pointing to the first element with key not
//! less than k, or a.end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
const_iterator lower_bound(const key_type& x) const
{ return m_flat_tree.lower_bound(x); }
//! <b>Returns</b>: An iterator pointing to the first element with key not less
//! than x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
iterator upper_bound(const key_type& x)
{ return m_flat_tree.upper_bound(x); }
//! <b>Returns</b>: A const iterator pointing to the first element with key not
//! less than x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
const_iterator upper_bound(const key_type& x) const
{ return m_flat_tree.upper_bound(x); }
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
//!
//! <b>Complexity</b>: Logarithmic
std::pair<const_iterator, const_iterator>
equal_range(const key_type& x) const
{ return m_flat_tree.equal_range(x); }
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
//!
//! <b>Complexity</b>: Logarithmic
std::pair<iterator,iterator>
equal_range(const key_type& x)
{ return m_flat_tree.equal_range(x); }
//! <b>Effects</b>: Number of elements for which memory has been allocated.
//! capacity() is always greater than or equal to size().
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type capacity() const
{ return m_flat_tree.capacity(); }
//! <b>Effects</b>: If n is less than or equal to capacity(), this call has no
//! effect. Otherwise, it is a request for allocation of additional memory.
//! If the request is successful, then capacity() is greater than or equal to
//! n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
//!
//! <b>Throws</b>: If memory allocation allocation throws or T's copy constructor throws.
//!
//! <b>Note</b>: If capacity() is less than "count", iterators and references to
//! to values might be invalidated.
void reserve(size_type count)
{ m_flat_tree.reserve(count); }
/// @cond
template <class K1, class C1, class A1>
friend bool operator== (const flat_multiset<K1,C1,A1>&,
const flat_multiset<K1,C1,A1>&);
template <class K1, class C1, class A1>
friend bool operator< (const flat_multiset<K1,C1,A1>&,
const flat_multiset<K1,C1,A1>&);
/// @endcond
};
template <class T, class Pred, class Alloc>
inline bool operator==(const flat_multiset<T,Pred,Alloc>& x,
const flat_multiset<T,Pred,Alloc>& y)
{ return x.m_flat_tree == y.m_flat_tree; }
template <class T, class Pred, class Alloc>
inline bool operator<(const flat_multiset<T,Pred,Alloc>& x,
const flat_multiset<T,Pred,Alloc>& y)
{ return x.m_flat_tree < y.m_flat_tree; }
template <class T, class Pred, class Alloc>
inline bool operator!=(const flat_multiset<T,Pred,Alloc>& x,
const flat_multiset<T,Pred,Alloc>& y)
{ return !(x == y); }
template <class T, class Pred, class Alloc>
inline bool operator>(const flat_multiset<T,Pred,Alloc>& x,
const flat_multiset<T,Pred,Alloc>& y)
{ return y < x; }
template <class T, class Pred, class Alloc>
inline bool operator<=(const flat_multiset<T,Pred,Alloc>& x,
const flat_multiset<T,Pred,Alloc>& y)
{ return !(y < x); }
template <class T, class Pred, class Alloc>
inline bool operator>=(const flat_multiset<T,Pred,Alloc>& x,
const flat_multiset<T,Pred,Alloc>& y)
{ return !(x < y); }
template <class T, class Pred, class Alloc>
inline void swap(flat_multiset<T,Pred,Alloc>& x, flat_multiset<T,Pred,Alloc>& y)
{ x.swap(y); }
/// @cond
} //namespace interprocess_container {
namespace interprocess {
//!has_trivial_destructor_after_move<> == true_type
//!specialization for optimizations
template <class T, class C, class A>
struct has_trivial_destructor_after_move<boost::interprocess_container::flat_multiset<T, C, A> >
{
static const bool value = has_trivial_destructor<A>::value && has_trivial_destructor<C>::value;
};
} //namespace interprocess {
namespace interprocess_container {
/// @endcond
}}
#include <boost/interprocess/containers/container/detail/config_end.hpp>
#endif /* BOOST_CONTAINERS_FLAT_SET_HPP */