boost/intrusive/detail/utilities.hpp
/////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2006-2008
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/intrusive for documentation.
//
/////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_INTRUSIVE_DETAIL_UTILITIES_HPP
#define BOOST_INTRUSIVE_DETAIL_UTILITIES_HPP
#include <boost/intrusive/detail/config_begin.hpp>
#include <boost/intrusive/detail/pointer_to_other.hpp>
#include <boost/intrusive/detail/parent_from_member.hpp>
#include <boost/intrusive/detail/ebo_functor_holder.hpp>
#include <boost/intrusive/link_mode.hpp>
#include <boost/intrusive/detail/mpl.hpp>
#include <boost/intrusive/detail/assert.hpp>
#include <boost/cstdint.hpp>
#include <cstddef>
#include <climits>
#include <iterator>
#include <boost/cstdint.hpp>
#include <boost/static_assert.hpp>
namespace boost {
namespace intrusive {
namespace detail {
template <class T>
struct internal_member_value_traits
{
template <class U> static detail::one test(...);
template <class U> static detail::two test(typename U::member_value_traits* = 0);
static const bool value = sizeof(test<T>(0)) == sizeof(detail::two);
};
template <class T>
struct internal_base_hook_bool
{
template<bool Add>
struct two_or_three {one _[2 + Add];};
template <class U> static one test(...);
template <class U> static two_or_three<U::boost_intrusive_tags::is_base_hook>
test (detail::bool_<U::boost_intrusive_tags::is_base_hook>* = 0);
static const std::size_t value = sizeof(test<T>(0));
};
template <class T>
struct internal_base_hook_bool_is_true
{
static const bool value = internal_base_hook_bool<T>::value > sizeof(one)*2;
};
template <class T>
struct internal_any_hook_bool
{
template<bool Add>
struct two_or_three {one _[2 + Add];};
template <class U> static one test(...);
template <class U> static two_or_three<U::is_any_hook>
test (detail::bool_<U::is_any_hook>* = 0);
static const std::size_t value = sizeof(test<T>(0));
};
template <class T>
struct internal_any_hook_bool_is_true
{
static const bool value = internal_any_hook_bool<T>::value > sizeof(one)*2;
};
template <class T>
struct external_value_traits_bool
{
template<bool Add>
struct two_or_three {one _[2 + Add];};
template <class U> static one test(...);
template <class U> static two_or_three<U::external_value_traits>
test (detail::bool_<U::external_value_traits>* = 0);
static const std::size_t value = sizeof(test<T>(0));
};
template <class T>
struct external_bucket_traits_bool
{
template<bool Add>
struct two_or_three {one _[2 + Add];};
template <class U> static one test(...);
template <class U> static two_or_three<U::external_bucket_traits>
test (detail::bool_<U::external_bucket_traits>* = 0);
static const std::size_t value = sizeof(test<T>(0));
};
template <class T>
struct external_value_traits_is_true
{
static const bool value = external_value_traits_bool<T>::value > sizeof(one)*2;
};
template<class Node, class Tag, link_mode_type LinkMode, int>
struct node_holder
: public Node
{};
template<class SmartPtr>
struct smart_ptr_type
{
typedef typename SmartPtr::value_type value_type;
typedef value_type *pointer;
static pointer get (const SmartPtr &smartptr)
{ return smartptr.get();}
};
template<class T>
struct smart_ptr_type<T*>
{
typedef T value_type;
typedef value_type *pointer;
static pointer get (pointer ptr)
{ return ptr;}
};
//!Overload for smart pointers to avoid ADL problems with get_pointer
template<class Ptr>
inline typename smart_ptr_type<Ptr>::pointer
get_pointer(const Ptr &ptr)
{ return smart_ptr_type<Ptr>::get(ptr); }
//This functor compares a stored value
//and the one passed as an argument
template<class ConstReference>
class equal_to_value
{
ConstReference t_;
public:
equal_to_value(ConstReference t)
: t_(t)
{}
bool operator()(ConstReference t)const
{ return t_ == t; }
};
class null_disposer
{
public:
template <class Pointer>
void operator()(Pointer)
{}
};
template<class NodeAlgorithms>
class init_disposer
{
typedef typename NodeAlgorithms::node_ptr node_ptr;
public:
void operator()(node_ptr p)
{ NodeAlgorithms::init(p); }
};
template<bool ConstantSize, class SizeType>
struct size_holder
{
static const bool constant_time_size = ConstantSize;
typedef SizeType size_type;
SizeType get_size() const
{ return size_; }
void set_size(SizeType size)
{ size_ = size; }
void decrement()
{ --size_; }
void increment()
{ ++size_; }
SizeType size_;
};
template<class SizeType>
struct size_holder<false, SizeType>
{
static const bool constant_time_size = false;
typedef SizeType size_type;
size_type get_size() const
{ return 0; }
void set_size(size_type)
{}
void decrement()
{}
void increment()
{}
};
template<class KeyValueCompare, class Container>
struct key_nodeptr_comp
: private detail::ebo_functor_holder<KeyValueCompare>
{
typedef typename Container::real_value_traits real_value_traits;
typedef typename real_value_traits::node_ptr node_ptr;
typedef typename real_value_traits::const_node_ptr const_node_ptr;
typedef detail::ebo_functor_holder<KeyValueCompare> base_t;
key_nodeptr_comp(KeyValueCompare kcomp, const Container *cont)
: base_t(kcomp), cont_(cont)
{}
template<class KeyType>
bool operator()( const_node_ptr node, const KeyType &key
, typename enable_if_c
<!is_convertible<KeyType, const_node_ptr>::value>::type * = 0) const
{ return base_t::get()(*cont_->get_real_value_traits().to_value_ptr(node), key); }
template<class KeyType>
bool operator()(const KeyType &key, const_node_ptr node
, typename enable_if_c
<!is_convertible<KeyType, const_node_ptr>::value>::type * = 0) const
{ return base_t::get()(key, *cont_->get_real_value_traits().to_value_ptr(node)); }
bool operator()(const_node_ptr node1, const_node_ptr node2) const
{
return base_t::get()
( *cont_->get_real_value_traits().to_value_ptr(node1)
, *cont_->get_real_value_traits().to_value_ptr(node2)
);
}
const Container *cont_;
};
template<class F, class Container>
struct node_cloner
: private detail::ebo_functor_holder<F>
{
typedef typename Container::real_value_traits real_value_traits;
typedef typename Container::node_algorithms node_algorithms;
typedef typename real_value_traits::value_type value_type;
typedef typename real_value_traits::pointer pointer;
typedef typename real_value_traits::node_traits::node node;
typedef typename real_value_traits::node_ptr node_ptr;
typedef typename real_value_traits::const_node_ptr const_node_ptr;
typedef detail::ebo_functor_holder<F> base_t;
enum { safemode_or_autounlink =
(int)real_value_traits::link_mode == (int)auto_unlink ||
(int)real_value_traits::link_mode == (int)safe_link };
node_cloner(F f, const Container *cont)
: base_t(f), cont_(cont)
{}
node_ptr operator()(node_ptr p)
{ return this->operator()(*p); }
node_ptr operator()(const node &to_clone)
{
const value_type &v =
*cont_->get_real_value_traits().to_value_ptr(const_node_ptr(&to_clone));
node_ptr n = cont_->get_real_value_traits().to_node_ptr(*base_t::get()(v));
//Cloned node must be in default mode if the linking mode requires it
if(safemode_or_autounlink)
BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(n));
return n;
}
const Container *cont_;
};
template<class F, class Container>
struct node_disposer
: private detail::ebo_functor_holder<F>
{
typedef typename Container::real_value_traits real_value_traits;
typedef typename real_value_traits::node_ptr node_ptr;
typedef detail::ebo_functor_holder<F> base_t;
typedef typename Container::node_algorithms node_algorithms;
enum { safemode_or_autounlink =
(int)real_value_traits::link_mode == (int)auto_unlink ||
(int)real_value_traits::link_mode == (int)safe_link };
node_disposer(F f, const Container *cont)
: base_t(f), cont_(cont)
{}
void operator()(node_ptr p)
{
if(safemode_or_autounlink)
node_algorithms::init(p);
base_t::get()(cont_->get_real_value_traits().to_value_ptr(p));
}
const Container *cont_;
};
struct dummy_constptr
{
dummy_constptr(const void *)
{}
const void *get_ptr() const
{ return 0; }
};
template<class VoidPointer>
struct constptr
{
typedef typename boost::pointer_to_other
<VoidPointer, const void>::type ConstVoidPtr;
constptr(const void *ptr)
: const_void_ptr_(ptr)
{}
const void *get_ptr() const
{ return detail::get_pointer(const_void_ptr_); }
ConstVoidPtr const_void_ptr_;
};
template <class VoidPointer, bool store_ptr>
struct select_constptr
{
typedef typename detail::if_c
< store_ptr
, constptr<VoidPointer>
, dummy_constptr
>::type type;
};
template <class Container>
struct store_cont_ptr_on_it
{
typedef typename Container::value_traits value_traits;
static const bool value =
!detail::is_empty_class<value_traits>::value
|| detail::external_value_traits_is_true<value_traits>::value
;
};
template<class T, bool Add>
struct add_const_if_c
{
typedef typename detail::if_c
< Add
, typename detail::add_const<T>::type
, T
>::type type;
};
template<class Container, bool IsConst>
struct node_to_value
: public detail::select_constptr
< typename boost::pointer_to_other
<typename Container::pointer, void>::type
, detail::store_cont_ptr_on_it<Container>::value
>::type
{
static const bool store_container_ptr =
detail::store_cont_ptr_on_it<Container>::value;
typedef typename Container::real_value_traits real_value_traits;
typedef typename real_value_traits::value_type value_type;
typedef typename detail::select_constptr
< typename boost::pointer_to_other
<typename Container::pointer, void>::type
, store_container_ptr >::type Base;
typedef typename real_value_traits::node_traits::node node;
typedef typename detail::add_const_if_c
<value_type, IsConst>::type vtype;
typedef typename detail::add_const_if_c
<node, IsConst>::type ntype;
typedef typename boost::pointer_to_other
<typename Container::pointer, ntype>::type npointer;
node_to_value(const Container *cont)
: Base(cont)
{}
typedef vtype & result_type;
typedef ntype & first_argument_type;
const Container *get_container() const
{
if(store_container_ptr)
return static_cast<const Container*>(Base::get_ptr());
else
return 0;
}
const real_value_traits *get_real_value_traits() const
{
if(store_container_ptr)
return &this->get_container()->get_real_value_traits();
else
return 0;
}
result_type operator()(first_argument_type arg) const
{ return *(this->get_real_value_traits()->to_value_ptr(npointer(&arg))); }
};
template <link_mode_type LinkMode>
struct link_dispatch
{};
template<class Hook>
void destructor_impl(Hook &hook, detail::link_dispatch<safe_link>)
{ //If this assertion raises, you might have destroyed an object
//while it was still inserted in a container that is alive.
//If so, remove the object from the container before destroying it.
(void)hook; BOOST_INTRUSIVE_SAFE_HOOK_DESTRUCTOR_ASSERT(!hook.is_linked());
}
template<class Hook>
void destructor_impl(Hook &hook, detail::link_dispatch<auto_unlink>)
{ hook.unlink(); }
template<class Hook>
void destructor_impl(Hook &, detail::link_dispatch<normal_link>)
{}
template<class T, class NodeTraits, link_mode_type LinkMode, class Tag, int HookType>
struct base_hook_traits
{
public:
typedef detail::node_holder
<typename NodeTraits::node, Tag, LinkMode, HookType> node_holder;
typedef NodeTraits node_traits;
typedef T value_type;
typedef typename node_traits::node_ptr node_ptr;
typedef typename node_traits::const_node_ptr const_node_ptr;
typedef typename boost::pointer_to_other<node_ptr, T>::type pointer;
typedef typename boost::pointer_to_other<node_ptr, const T>::type const_pointer;
typedef typename std::iterator_traits<pointer>::reference reference;
typedef typename std::iterator_traits<const_pointer>::reference const_reference;
static const link_mode_type link_mode = LinkMode;
static node_ptr to_node_ptr(reference value)
{ return static_cast<node_holder*>(&value); }
static const_node_ptr to_node_ptr(const_reference value)
{ return static_cast<const node_holder*>(&value); }
static pointer to_value_ptr(node_ptr n)
{ return static_cast<T*>(static_cast<node_holder*>(&*n)); }
static const_pointer to_value_ptr(const_node_ptr n)
{ return static_cast<const T*>(static_cast<const node_holder*>(&*n)); }
};
template<class T, class Hook, Hook T::* P>
struct member_hook_traits
{
public:
typedef Hook hook_type;
typedef typename hook_type::boost_intrusive_tags::node_traits node_traits;
typedef typename node_traits::node node;
typedef T value_type;
typedef typename node_traits::node_ptr node_ptr;
typedef typename node_traits::const_node_ptr const_node_ptr;
typedef typename boost::pointer_to_other<node_ptr, T>::type pointer;
typedef typename boost::pointer_to_other<node_ptr, const T>::type const_pointer;
typedef typename std::iterator_traits<pointer>::reference reference;
typedef typename std::iterator_traits<const_pointer>::reference const_reference;
static const link_mode_type link_mode = Hook::boost_intrusive_tags::link_mode;
static node_ptr to_node_ptr(reference value)
{
return reinterpret_cast<node*>(&(value.*P));
}
static const_node_ptr to_node_ptr(const_reference value)
{
return static_cast<const node*>(&(value.*P));
}
static pointer to_value_ptr(node_ptr n)
{
return detail::parent_from_member<T, Hook>
(static_cast<Hook*>(detail::get_pointer(n)), P);
}
static const_pointer to_value_ptr(const_node_ptr n)
{
return detail::parent_from_member<T, Hook>
(static_cast<const Hook*>(detail::get_pointer(n)), P);
}
};
//This function uses binary search to discover the
//highest set bit of the integer
inline std::size_t floor_log2 (std::size_t x)
{
const std::size_t Bits = sizeof(std::size_t)*CHAR_BIT;
const bool Size_t_Bits_Power_2= !(Bits & (Bits-1));
BOOST_STATIC_ASSERT(Size_t_Bits_Power_2);
std::size_t n = x;
std::size_t log2 = 0;
for(std::size_t shift = Bits >> 1; shift; shift >>= 1){
std::size_t tmp = n >> shift;
if (tmp)
log2 += shift, n = tmp;
}
return log2;
}
inline float fast_log2 (float val)
{
boost::uint32_t * exp_ptr =
static_cast<boost::uint32_t *>(static_cast<void*>(&val));
boost::uint32_t x = *exp_ptr;
const int log_2 = (int)(((x >> 23) & 255) - 128);
x &= ~(255 << 23);
x += 127 << 23;
*exp_ptr = x;
val = ((-1.0f/3) * val + 2) * val - 2.0f/3;
return (val + log_2);
}
inline std::size_t ceil_log2 (std::size_t x)
{
return ((x & (x-1))!= 0) + floor_log2(x);
}
template<class SizeType, std::size_t N>
struct numbits_eq
{
static const bool value = sizeof(SizeType)*CHAR_BIT == N;
};
template<class SizeType, class Enabler = void >
struct sqrt2_pow_max;
template <class SizeType>
struct sqrt2_pow_max<SizeType, typename enable_if< numbits_eq<SizeType, 32> >::type>
{
static const boost::uint32_t value = 0xb504f334;
static const std::size_t pow = 31;
};
template <class SizeType>
struct sqrt2_pow_max<SizeType, typename enable_if< numbits_eq<SizeType, 64> >::type>
{
static const boost::uint64_t value = 0xb504f333f9de6484ull;
static const std::size_t pow = 63;
};
// Returns floor(pow(sqrt(2), x * 2 + 1)).
// Defined for X from 0 up to the number of bits in size_t minus 1.
inline std::size_t sqrt2_pow_2xplus1 (std::size_t x)
{
const std::size_t value = (std::size_t)sqrt2_pow_max<std::size_t>::value;
const std::size_t pow = (std::size_t)sqrt2_pow_max<std::size_t>::pow;
return (value >> (pow - x)) + 1;
}
template<class Container, class Disposer>
class exception_disposer
{
Container *cont_;
Disposer &disp_;
exception_disposer(const exception_disposer&);
exception_disposer &operator=(const exception_disposer&);
public:
exception_disposer(Container &cont, Disposer &disp)
: cont_(&cont), disp_(disp)
{}
void release()
{ cont_ = 0; }
~exception_disposer()
{
if(cont_){
cont_->clear_and_dispose(disp_);
}
}
};
template<class Container, class Disposer>
class exception_array_disposer
{
Container *cont_;
Disposer &disp_;
typename Container::size_type &constructed_;
exception_array_disposer(const exception_array_disposer&);
exception_array_disposer &operator=(const exception_array_disposer&);
public:
typedef typename Container::size_type size_type;
exception_array_disposer
(Container &cont, Disposer &disp, size_type &constructed)
: cont_(&cont), disp_(disp), constructed_(constructed)
{}
void release()
{ cont_ = 0; }
~exception_array_disposer()
{
size_type n = constructed_;
if(cont_){
while(n--){
cont_[n].clear_and_dispose(disp_);
}
}
}
};
} //namespace detail
} //namespace intrusive
} //namespace boost
#include <boost/intrusive/detail/config_end.hpp>
#endif //BOOST_INTRUSIVE_DETAIL_UTILITIES_HPP