boost/math/special_functions/detail/bessel_jn.hpp
// Copyright (c) 2006 Xiaogang Zhang // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_BESSEL_JN_HPP #define BOOST_MATH_BESSEL_JN_HPP #ifdef _MSC_VER #pragma once #endif #include <boost/math/special_functions/detail/bessel_j0.hpp> #include <boost/math/special_functions/detail/bessel_j1.hpp> #include <boost/math/special_functions/detail/bessel_jy.hpp> // Bessel function of the first kind of integer order // J_n(z) is the minimal solution // n < abs(z), forward recurrence stable and usable // n >= abs(z), forward recurrence unstable, use Miller's algorithm namespace boost { namespace math { namespace detail{ template <typename T, typename Policy> T bessel_jn(int n, T x, const Policy& pol) { T value(0), factor, current, prev, next; BOOST_MATH_STD_USING // // Reflection has to come first: // if (n < 0) { factor = (n & 0x1) ? -1 : 1; // J_{-n}(z) = (-1)^n J_n(z) n = -n; } else { factor = 1; } // // Special cases: // if (n == 0) { return factor * bessel_j0(x); } if (n == 1) { return factor * bessel_j1(x); } if (x == 0) // n >= 2 { return static_cast<T>(0); } BOOST_ASSERT(n > 1); if (n < abs(x)) // forward recurrence { prev = bessel_j0(x); current = bessel_j1(x); for (int k = 1; k < n; k++) { value = 2 * k * current / x - prev; prev = current; current = value; } } else // backward recurrence { T fn; int s; // fn = J_(n+1) / J_n // |x| <= n, fast convergence for continued fraction CF1 boost::math::detail::CF1_jy(static_cast<T>(n), x, &fn, &s, pol); // tiny initial value to prevent overflow T init = sqrt(tools::min_value<T>()); prev = fn * init; current = init; for (int k = n; k > 0; k--) { next = 2 * k * current / x - prev; prev = current; current = next; } T ratio = init / current; // scaling ratio value = bessel_j0(x) * ratio; // normalization } value *= factor; return value; } }}} // namespaces #endif // BOOST_MATH_BESSEL_JN_HPP