boost/random/uniform_int.hpp
/* boost random/uniform_int.hpp header file
*
* Copyright Jens Maurer 2000-2001
* Distributed under the Boost Software License, Version 1.0. (See
* accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*
* See http://www.boost.org for most recent version including documentation.
*
* $Id: uniform_int.hpp 56814 2009-10-14 04:54:01Z steven_watanabe $
*
* Revision history
* 2001-04-08 added min<max assertion (N. Becker)
* 2001-02-18 moved to individual header files
*/
#ifndef BOOST_RANDOM_UNIFORM_INT_HPP
#define BOOST_RANDOM_UNIFORM_INT_HPP
#include <cassert>
#include <iostream>
#include <boost/config.hpp>
#include <boost/limits.hpp>
#include <boost/static_assert.hpp>
#include <boost/detail/workaround.hpp>
#include <boost/random/detail/config.hpp>
#include <boost/random/detail/signed_unsigned_tools.hpp>
#include <boost/type_traits/make_unsigned.hpp>
namespace boost {
// uniform integer distribution on [min, max]
template<class IntType = int>
class uniform_int
{
public:
typedef IntType input_type;
typedef IntType result_type;
typedef typename make_unsigned<result_type>::type range_type;
explicit uniform_int(IntType min_arg = 0, IntType max_arg = 9)
: _min(min_arg), _max(max_arg)
{
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
// MSVC fails BOOST_STATIC_ASSERT with std::numeric_limits at class scope
BOOST_STATIC_ASSERT(std::numeric_limits<IntType>::is_integer);
#endif
assert(min_arg <= max_arg);
init();
}
result_type min BOOST_PREVENT_MACRO_SUBSTITUTION () const { return _min; }
result_type max BOOST_PREVENT_MACRO_SUBSTITUTION () const { return _max; }
void reset() { }
// can't have member function templates out-of-line due to MSVC bugs
template<class Engine>
result_type operator()(Engine& eng)
{
return generate(eng, _min, _max, _range);
}
template<class Engine>
result_type operator()(Engine& eng, result_type n)
{
assert(n > 0);
if (n == 1)
{
return 0;
}
return generate(eng, 0, n - 1, n - 1);
}
#ifndef BOOST_RANDOM_NO_STREAM_OPERATORS
template<class CharT, class Traits>
friend std::basic_ostream<CharT,Traits>&
operator<<(std::basic_ostream<CharT,Traits>& os, const uniform_int& ud)
{
os << ud._min << " " << ud._max;
return os;
}
template<class CharT, class Traits>
friend std::basic_istream<CharT,Traits>&
operator>>(std::basic_istream<CharT,Traits>& is, uniform_int& ud)
{
is >> std::ws >> ud._min >> std::ws >> ud._max;
ud.init();
return is;
}
#endif
private:
template<class Engine>
static result_type generate(Engine& eng, result_type min_value, result_type max_value, range_type range)
{
typedef typename Engine::result_type base_result;
// ranges are always unsigned
typedef typename make_unsigned<base_result>::type base_unsigned;
const base_result bmin = (eng.min)();
const base_unsigned brange =
random::detail::subtract<base_result>()((eng.max)(), (eng.min)());
if(range == 0) {
return min_value;
} else if(brange == range) {
// this will probably never happen in real life
// basically nothing to do; just take care we don't overflow / underflow
base_unsigned v = random::detail::subtract<base_result>()(eng(), bmin);
return random::detail::add<base_unsigned, result_type>()(v, min_value);
} else if(brange < range) {
// use rejection method to handle things like 0..3 --> 0..4
for(;;) {
// concatenate several invocations of the base RNG
// take extra care to avoid overflows
// limit == floor((range+1)/(brange+1))
// Therefore limit*(brange+1) <= range+1
range_type limit;
if(range == (std::numeric_limits<range_type>::max)()) {
limit = range/(range_type(brange)+1);
if(range % (range_type(brange)+1) == range_type(brange))
++limit;
} else {
limit = (range+1)/(range_type(brange)+1);
}
// We consider "result" as expressed to base (brange+1):
// For every power of (brange+1), we determine a random factor
range_type result = range_type(0);
range_type mult = range_type(1);
// loop invariants:
// result < mult
// mult <= range
while(mult <= limit) {
// Postcondition: result <= range, thus no overflow
//
// limit*(brange+1)<=range+1 def. of limit (1)
// eng()-bmin<=brange eng() post. (2)
// and mult<=limit. loop condition (3)
// Therefore mult*(eng()-bmin+1)<=range+1 by (1),(2),(3) (4)
// Therefore mult*(eng()-bmin)+mult<=range+1 rearranging (4) (5)
// result<mult loop invariant (6)
// Therefore result+mult*(eng()-bmin)<range+1 by (5), (6) (7)
//
// Postcondition: result < mult*(brange+1)
//
// result<mult loop invariant (1)
// eng()-bmin<=brange eng() post. (2)
// Therefore result+mult*(eng()-bmin) <
// mult+mult*(eng()-bmin) by (1) (3)
// Therefore result+(eng()-bmin)*mult <
// mult+mult*brange by (2), (3) (4)
// Therefore result+(eng()-bmin)*mult <
// mult*(brange+1) by (4)
result += static_cast<range_type>(random::detail::subtract<base_result>()(eng(), bmin) * mult);
// equivalent to (mult * (brange+1)) == range+1, but avoids overflow.
if(mult * range_type(brange) == range - mult + 1) {
// The destination range is an integer power of
// the generator's range.
return(result);
}
// Postcondition: mult <= range
//
// limit*(brange+1)<=range+1 def. of limit (1)
// mult<=limit loop condition (2)
// Therefore mult*(brange+1)<=range+1 by (1), (2) (3)
// mult*(brange+1)!=range+1 preceding if (4)
// Therefore mult*(brange+1)<range+1 by (3), (4) (5)
//
// Postcondition: result < mult
//
// See the second postcondition on the change to result.
mult *= range_type(brange)+range_type(1);
}
// loop postcondition: range/mult < brange+1
//
// mult > limit loop condition (1)
// Suppose range/mult >= brange+1 Assumption (2)
// range >= mult*(brange+1) by (2) (3)
// range+1 > mult*(brange+1) by (3) (4)
// range+1 > (limit+1)*(brange+1) by (1), (4) (5)
// (range+1)/(brange+1) > limit+1 by (5) (6)
// limit < floor((range+1)/(brange+1)) by (6) (7)
// limit==floor((range+1)/(brange+1)) def. of limit (8)
// not (2) reductio (9)
//
// loop postcondition: (range/mult)*mult+(mult-1) >= range
//
// (range/mult)*mult + range%mult == range identity (1)
// range%mult < mult def. of % (2)
// (range/mult)*mult+mult > range by (1), (2) (3)
// (range/mult)*mult+(mult-1) >= range by (3) (4)
//
// Note that the maximum value of result at this point is (mult-1),
// so after this final step, we generate numbers that can be
// at least as large as range. We have to really careful to avoid
// overflow in this final addition and in the rejection. Anything
// that overflows is larger than range and can thus be rejected.
// range/mult < brange+1 -> no endless loop
range_type result_increment = uniform_int<range_type>(0, range/mult)(eng);
if((std::numeric_limits<range_type>::max)() / mult < result_increment) {
// The multiplcation would overflow. Reject immediately.
continue;
}
result_increment *= mult;
// unsigned integers are guaranteed to wrap on overflow.
result += result_increment;
if(result < result_increment) {
// The addition overflowed. Reject.
continue;
}
if(result > range) {
// Too big. Reject.
continue;
}
return random::detail::add<range_type, result_type>()(result, min_value);
}
} else { // brange > range
base_unsigned bucket_size;
// it's safe to add 1 to range, as long as we cast it first,
// because we know that it is less than brange. However,
// we do need to be careful not to cause overflow by adding 1
// to brange.
if(brange == (std::numeric_limits<base_unsigned>::max)()) {
bucket_size = brange / (static_cast<base_unsigned>(range)+1);
if(brange % (static_cast<base_unsigned>(range)+1) == static_cast<base_unsigned>(range)) {
++bucket_size;
}
} else {
bucket_size = (brange+1) / (static_cast<base_unsigned>(range)+1);
}
for(;;) {
base_unsigned result =
random::detail::subtract<base_result>()(eng(), bmin);
result /= bucket_size;
// result and range are non-negative, and result is possibly larger
// than range, so the cast is safe
if(result <= static_cast<base_unsigned>(range))
return random::detail::add<base_unsigned, result_type>()(result, min_value);
}
}
}
void init()
{
_range = random::detail::subtract<result_type>()(_max, _min);
}
// The result_type may be signed or unsigned, but the _range is always
// unsigned.
result_type _min, _max;
range_type _range;
};
} // namespace boost
#endif // BOOST_RANDOM_UNIFORM_INT_HPP