boost/asio/detail/kqueue_reactor.hpp
//
// kqueue_reactor.hpp
// ~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2010 Christopher M. Kohlhoff (chris at kohlhoff dot com)
// Copyright (c) 2005 Stefan Arentz (stefan at soze dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_KQUEUE_REACTOR_HPP
#define BOOST_ASIO_DETAIL_KQUEUE_REACTOR_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/kqueue_reactor_fwd.hpp>
#if defined(BOOST_ASIO_HAS_KQUEUE)
#include <boost/asio/detail/push_options.hpp>
#include <cstddef>
#include <sys/types.h>
#include <sys/event.h>
#include <sys/time.h>
#include <boost/config.hpp>
#include <boost/throw_exception.hpp>
#include <boost/system/system_error.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/error.hpp>
#include <boost/asio/io_service.hpp>
#include <boost/asio/detail/hash_map.hpp>
#include <boost/asio/detail/mutex.hpp>
#include <boost/asio/detail/op_queue.hpp>
#include <boost/asio/detail/reactor_op.hpp>
#include <boost/asio/detail/select_interrupter.hpp>
#include <boost/asio/detail/service_base.hpp>
#include <boost/asio/detail/socket_types.hpp>
#include <boost/asio/detail/timer_op.hpp>
#include <boost/asio/detail/timer_queue_base.hpp>
#include <boost/asio/detail/timer_queue_fwd.hpp>
#include <boost/asio/detail/timer_queue_set.hpp>
// Older versions of Mac OS X may not define EV_OOBAND.
#if !defined(EV_OOBAND)
# define EV_OOBAND EV_FLAG1
#endif // !defined(EV_OOBAND)
namespace boost {
namespace asio {
namespace detail {
class kqueue_reactor
: public boost::asio::detail::service_base<kqueue_reactor>
{
public:
enum op_types { read_op = 0, write_op = 1,
connect_op = 1, except_op = 2, max_ops = 3 };
// Per-descriptor queues.
struct descriptor_state
{
descriptor_state() {}
descriptor_state(const descriptor_state&) {}
void operator=(const descriptor_state&) {}
mutex mutex_;
op_queue<reactor_op> op_queue_[max_ops];
bool shutdown_;
};
// Per-descriptor data.
typedef descriptor_state* per_descriptor_data;
// Constructor.
kqueue_reactor(boost::asio::io_service& io_service)
: boost::asio::detail::service_base<kqueue_reactor>(io_service),
io_service_(use_service<io_service_impl>(io_service)),
mutex_(),
kqueue_fd_(do_kqueue_create()),
interrupter_(),
shutdown_(false)
{
// The interrupter is put into a permanently readable state. Whenever we
// want to interrupt the blocked kevent call we register a one-shot read
// operation against the descriptor.
interrupter_.interrupt();
}
// Destructor.
~kqueue_reactor()
{
close(kqueue_fd_);
}
// Destroy all user-defined handler objects owned by the service.
void shutdown_service()
{
mutex::scoped_lock lock(mutex_);
shutdown_ = true;
lock.unlock();
op_queue<operation> ops;
descriptor_map::iterator iter = registered_descriptors_.begin();
descriptor_map::iterator end = registered_descriptors_.end();
while (iter != end)
{
for (int i = 0; i < max_ops; ++i)
ops.push(iter->second.op_queue_[i]);
iter->second.shutdown_ = true;
++iter;
}
timer_queues_.get_all_timers(ops);
}
// Initialise the task.
void init_task()
{
io_service_.init_task();
}
// Register a socket with the reactor. Returns 0 on success, system error
// code on failure.
int register_descriptor(socket_type descriptor,
per_descriptor_data& descriptor_data)
{
mutex::scoped_lock lock(registered_descriptors_mutex_);
descriptor_map::iterator new_entry = registered_descriptors_.insert(
std::make_pair(descriptor, descriptor_state())).first;
descriptor_data = &new_entry->second;
descriptor_data->shutdown_ = false;
return 0;
}
// Start a new operation. The reactor operation will be performed when the
// given descriptor is flagged as ready, or an error has occurred.
void start_op(int op_type, socket_type descriptor,
per_descriptor_data& descriptor_data,
reactor_op* op, bool allow_speculative)
{
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
if (descriptor_data->shutdown_)
return;
bool first = descriptor_data->op_queue_[op_type].empty();
if (first)
{
if (allow_speculative)
{
if (op_type != read_op || descriptor_data->op_queue_[except_op].empty())
{
if (op->perform())
{
descriptor_lock.unlock();
io_service_.post_immediate_completion(op);
return;
}
}
}
}
descriptor_data->op_queue_[op_type].push(op);
io_service_.work_started();
if (first)
{
struct kevent event;
switch (op_type)
{
case read_op:
EV_SET(&event, descriptor, EVFILT_READ,
EV_ADD | EV_ONESHOT, 0, 0, descriptor_data);
break;
case write_op:
EV_SET(&event, descriptor, EVFILT_WRITE,
EV_ADD | EV_ONESHOT, 0, 0, descriptor_data);
break;
case except_op:
if (!descriptor_data->op_queue_[read_op].empty())
return; // Already registered for read events.
EV_SET(&event, descriptor, EVFILT_READ,
EV_ADD | EV_ONESHOT, EV_OOBAND, 0, descriptor_data);
break;
}
if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1)
{
op->ec_ = boost::system::error_code(errno,
boost::asio::error::get_system_category());
descriptor_data->op_queue_[op_type].pop();
io_service_.post_deferred_completion(op);
}
}
}
// Cancel all operations associated with the given descriptor. The
// handlers associated with the descriptor will be invoked with the
// operation_aborted error.
void cancel_ops(socket_type descriptor, per_descriptor_data& descriptor_data)
{
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
op_queue<operation> ops;
for (int i = 0; i < max_ops; ++i)
{
while (reactor_op* op = descriptor_data->op_queue_[i].front())
{
op->ec_ = boost::asio::error::operation_aborted;
descriptor_data->op_queue_[i].pop();
ops.push(op);
}
}
descriptor_lock.unlock();
io_service_.post_deferred_completions(ops);
}
// Cancel any operations that are running against the descriptor and remove
// its registration from the reactor.
void close_descriptor(socket_type descriptor,
per_descriptor_data& descriptor_data)
{
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
mutex::scoped_lock descriptors_lock(registered_descriptors_mutex_);
// Remove the descriptor from the set of known descriptors. The descriptor
// will be automatically removed from the kqueue set when it is closed.
descriptor_data->shutdown_ = true;
op_queue<operation> ops;
for (int i = 0; i < max_ops; ++i)
{
while (reactor_op* op = descriptor_data->op_queue_[i].front())
{
op->ec_ = boost::asio::error::operation_aborted;
descriptor_data->op_queue_[i].pop();
ops.push(op);
}
}
descriptor_lock.unlock();
registered_descriptors_.erase(descriptor);
descriptors_lock.unlock();
io_service_.post_deferred_completions(ops);
}
// Add a new timer queue to the reactor.
template <typename Time_Traits>
void add_timer_queue(timer_queue<Time_Traits>& timer_queue)
{
mutex::scoped_lock lock(mutex_);
timer_queues_.insert(&timer_queue);
}
// Remove a timer queue from the reactor.
template <typename Time_Traits>
void remove_timer_queue(timer_queue<Time_Traits>& timer_queue)
{
mutex::scoped_lock lock(mutex_);
timer_queues_.erase(&timer_queue);
}
// Schedule a new operation in the given timer queue to expire at the
// specified absolute time.
template <typename Time_Traits>
void schedule_timer(timer_queue<Time_Traits>& timer_queue,
const typename Time_Traits::time_type& time, timer_op* op, void* token)
{
mutex::scoped_lock lock(mutex_);
if (!shutdown_)
{
bool earliest = timer_queue.enqueue_timer(time, op, token);
io_service_.work_started();
if (earliest)
interrupt();
}
}
// Cancel the timer operations associated with the given token. Returns the
// number of operations that have been posted or dispatched.
template <typename Time_Traits>
std::size_t cancel_timer(timer_queue<Time_Traits>& timer_queue, void* token)
{
mutex::scoped_lock lock(mutex_);
op_queue<operation> ops;
std::size_t n = timer_queue.cancel_timer(token, ops);
lock.unlock();
io_service_.post_deferred_completions(ops);
return n;
}
// Run the kqueue loop.
void run(bool block, op_queue<operation>& ops)
{
mutex::scoped_lock lock(mutex_);
// Determine how long to block while waiting for events.
timespec timeout_buf = { 0, 0 };
timespec* timeout = block ? get_timeout(timeout_buf) : &timeout_buf;
lock.unlock();
// Block on the kqueue descriptor.
struct kevent events[128];
int num_events = kevent(kqueue_fd_, 0, 0, events, 128, timeout);
// Dispatch the waiting events.
for (int i = 0; i < num_events; ++i)
{
int descriptor = events[i].ident;
void* ptr = events[i].udata;
if (ptr == &interrupter_)
{
// No need to reset the interrupter since we're leaving the descriptor
// in a ready-to-read state and relying on one-shot notifications.
}
else
{
descriptor_state* descriptor_data = static_cast<descriptor_state*>(ptr);
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
// Exception operations must be processed first to ensure that any
// out-of-band data is read before normal data.
static const int filter[max_ops] =
{ EVFILT_READ, EVFILT_WRITE, EVFILT_READ };
for (int j = max_ops - 1; j >= 0; --j)
{
if (events[i].filter == filter[j])
{
if (j != except_op || events[i].flags & EV_OOBAND)
{
while (reactor_op* op = descriptor_data->op_queue_[j].front())
{
if (events[i].flags & EV_ERROR)
{
op->ec_ = boost::system::error_code(events[i].data,
boost::asio::error::get_system_category());
descriptor_data->op_queue_[j].pop();
ops.push(op);
}
if (op->perform())
{
descriptor_data->op_queue_[j].pop();
ops.push(op);
}
else
break;
}
}
}
}
// Renew registration for event notifications.
struct kevent event;
switch (events[i].filter)
{
case EVFILT_READ:
if (!descriptor_data->op_queue_[read_op].empty())
EV_SET(&event, descriptor, EVFILT_READ,
EV_ADD | EV_ONESHOT, 0, 0, descriptor_data);
else if (!descriptor_data->op_queue_[except_op].empty())
EV_SET(&event, descriptor, EVFILT_READ,
EV_ADD | EV_ONESHOT, EV_OOBAND, 0, descriptor_data);
else
continue;
case EVFILT_WRITE:
if (!descriptor_data->op_queue_[write_op].empty())
EV_SET(&event, descriptor, EVFILT_WRITE,
EV_ADD | EV_ONESHOT, 0, 0, descriptor_data);
else
continue;
default:
break;
}
if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1)
{
boost::system::error_code error(errno,
boost::asio::error::get_system_category());
for (int j = 0; j < max_ops; ++j)
{
while (reactor_op* op = descriptor_data->op_queue_[j].front())
{
op->ec_ = error;
descriptor_data->op_queue_[j].pop();
ops.push(op);
}
}
}
}
}
lock.lock();
timer_queues_.get_ready_timers(ops);
}
// Interrupt the kqueue loop.
void interrupt()
{
struct kevent event;
EV_SET(&event, interrupter_.read_descriptor(),
EVFILT_READ, EV_ADD | EV_ONESHOT, 0, 0, &interrupter_);
::kevent(kqueue_fd_, &event, 1, 0, 0, 0);
}
private:
// Create the kqueue file descriptor. Throws an exception if the descriptor
// cannot be created.
static int do_kqueue_create()
{
int fd = kqueue();
if (fd == -1)
{
boost::throw_exception(
boost::system::system_error(
boost::system::error_code(errno,
boost::asio::error::get_system_category()),
"kqueue"));
}
return fd;
}
// Get the timeout value for the kevent call.
timespec* get_timeout(timespec& ts)
{
// By default we will wait no longer than 5 minutes. This will ensure that
// any changes to the system clock are detected after no longer than this.
long usec = timer_queues_.wait_duration_usec(5 * 60 * 1000 * 1000);
ts.tv_sec = usec / 1000000;
ts.tv_nsec = (usec % 1000000) * 1000;
return &ts;
}
// The io_service implementation used to post completions.
io_service_impl& io_service_;
// Mutex to protect access to internal data.
mutex mutex_;
// The kqueue file descriptor.
int kqueue_fd_;
// The interrupter is used to break a blocking kevent call.
select_interrupter interrupter_;
// The timer queues.
timer_queue_set timer_queues_;
// Whether the service has been shut down.
bool shutdown_;
// Mutex to protect access to the registered descriptors.
mutex registered_descriptors_mutex_;
// Keep track of all registered descriptors. This code relies on the fact that
// the hash_map implementation pools deleted nodes, meaning that we can assume
// our descriptor_state pointer remains valid even after the entry is removed.
// Technically this is not true for C++98, as that standard says that spliced
// elements in a list are invalidated. However, C++0x fixes this shortcoming
// so we'll just assume that C++98 std::list implementations will do the right
// thing anyway.
typedef detail::hash_map<socket_type, descriptor_state> descriptor_map;
descriptor_map registered_descriptors_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#endif // defined(BOOST_ASIO_HAS_KQUEUE)
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_KQUEUE_REACTOR_HPP