Boost C++ Libraries

...one of the most highly regarded and expertly designed C++ library projects in the world. Herb Sutter and Andrei Alexandrescu, C++ Coding Standards

This is the documentation for an old version of Boost. Click here to view this page for the latest version.

boost/proto/traits.hpp

///////////////////////////////////////////////////////////////////////////////
/// \file traits.hpp
/// Contains definitions for child\<\>, child_c\<\>, left\<\>,
/// right\<\>, tag_of\<\>, and the helper functions child(), child_c(),
/// value(), left() and right().
//
//  Copyright 2008 Eric Niebler. Distributed under the Boost
//  Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_PROTO_ARG_TRAITS_HPP_EAN_04_01_2005
#define BOOST_PROTO_ARG_TRAITS_HPP_EAN_04_01_2005

#include <boost/config.hpp>
#include <boost/detail/workaround.hpp>
#include <boost/preprocessor/iteration/iterate.hpp>
#include <boost/preprocessor/repetition/enum.hpp>
#include <boost/preprocessor/repetition/enum_params.hpp>
#include <boost/preprocessor/repetition/enum_trailing_params.hpp>
#include <boost/preprocessor/repetition/repeat.hpp>
#include <boost/preprocessor/repetition/repeat_from_to.hpp>
#include <boost/preprocessor/facilities/intercept.hpp>
#include <boost/preprocessor/arithmetic/sub.hpp>
#include <boost/static_assert.hpp>
#include <boost/mpl/bool.hpp>
#include <boost/proto/detail/template_arity.hpp>
#include <boost/type_traits/is_pod.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/type_traits/add_const.hpp>
#include <boost/proto/proto_fwd.hpp>
#include <boost/proto/args.hpp>
#include <boost/proto/domain.hpp>
#include <boost/proto/transform/pass_through.hpp>

#if BOOST_WORKAROUND( BOOST_MSVC, >= 1400 )
    #pragma warning(push)
    #pragma warning(disable: 4180) // warning C4180: qualifier applied to function type has no meaning; ignored
#endif

namespace boost { namespace proto
{
    namespace detail
    {
        template<typename T, typename Void = void>
        struct if_vararg
        {};

        template<typename T>
        struct if_vararg<T, typename T::proto_is_vararg_>
          : T
        {};

        template<typename T, typename Void = void>
        struct is_callable2_
          : mpl::false_
        {};

        template<typename T>
        struct is_callable2_<T, typename T::proto_is_callable_>
          : mpl::true_
        {};

        template<typename T BOOST_PROTO_TEMPLATE_ARITY_PARAM(long Arity = boost::proto::detail::template_arity<T>::value)>
        struct is_callable_
          : is_callable2_<T>
        {};

    }

    /// \brief Boolean metafunction which detects whether a type is
    /// a callable function object type or not.
    ///
    /// <tt>is_callable\<\></tt> is used by the <tt>when\<\></tt> transform
    /// to determine whether a function type <tt>R(A1,A2,...AN)</tt> is a
    /// callable transform or an object transform. (The former are evaluated
    /// using <tt>call\<\></tt> and the later with <tt>make\<\></tt>.) If
    /// <tt>is_callable\<R\>::value</tt> is \c true, the function type is
    /// a callable transform; otherwise, it is an object transform.
    ///
    /// Unless specialized for a type \c T, <tt>is_callable\<T\>::value</tt>
    /// is computed as follows:
    ///
    /// \li If \c T is a template type <tt>X\<Y0,Y1,...YN\></tt>, where all \c Yx
    /// are types for \c x in <tt>[0,N]</tt>, <tt>is_callable\<T\>::value</tt>
    /// is <tt>is_same\<YN, proto::callable\>::value</tt>.
    /// \li If \c T has a nested type \c proto_is_callable_ that is a typedef
    /// for \c void, <tt>is_callable\<T\>::value</tt> is \c true. (Note: this is
    /// the case for any type that derives from \c proto::callable.)
    /// \li Otherwise, <tt>is_callable\<T\>::value</tt> is \c false.
    template<typename T>
    struct is_callable
      : proto::detail::is_callable_<T>
    {};

    /// INTERNAL ONLY
    ///
    template<>
    struct is_callable<proto::_>
      : mpl::true_
    {};

    /// INTERNAL ONLY
    ///
    template<>
    struct is_callable<proto::callable>
      : mpl::false_
    {};

    /// INTERNAL ONLY
    ///
    template<typename PrimitiveTransform, typename X>
    struct is_callable<proto::transform<PrimitiveTransform, X> >
      : mpl::false_
    {};

    #if BOOST_WORKAROUND(__GNUC__, == 3) || (__GNUC__ == 4 && __GNUC_MINOR__ == 0)
    // work around GCC bug
    template<typename Tag, typename Args, long N>
    struct is_callable<proto::expr<Tag, Args, N> >
      : mpl::false_
    {};

    // work around GCC bug
    template<typename Tag, typename Args, long N>
    struct is_callable<proto::basic_expr<Tag, Args, N> >
      : mpl::false_
    {};
    #endif

    namespace detail
    {
        template<typename T, typename Void /*= void*/>
        struct is_transform_
          : mpl::false_
        {};

        template<typename T>
        struct is_transform_<T, typename T::proto_is_transform_>
          : mpl::true_
        {};
    }

    /// \brief Boolean metafunction which detects whether a type is
    /// a PrimitiveTransform type or not.
    ///
    /// <tt>is_transform\<\></tt> is used by the <tt>call\<\></tt> transform
    /// to determine whether the function types <tt>R()</tt>, <tt>R(A1)</tt>,
    /// and <tt>R(A1, A2)</tt> should be passed the expression, state and data
    /// parameters (as needed).
    ///
    /// Unless specialized for a type \c T, <tt>is_transform\<T\>::value</tt>
    /// is computed as follows:
    ///
    /// \li If \c T has a nested type \c proto_is_transform_ that is a typedef
    /// for \c void, <tt>is_transform\<T\>::value</tt> is \c true. (Note: this is
    /// the case for any type that derives from an instantiation of \c proto::transform.)
    /// \li Otherwise, <tt>is_transform\<T\>::value</tt> is \c false.
    template<typename T>
    struct is_transform
      : proto::detail::is_transform_<T>
    {};

    namespace detail
    {
        template<typename T, typename Void /*= void*/>
        struct is_aggregate_
          : is_pod<T>
        {};

        template<typename Tag, typename Args, long N>
        struct is_aggregate_<proto::expr<Tag, Args, N>, void>
          : mpl::true_
        {};

        template<typename Tag, typename Args, long N>
        struct is_aggregate_<proto::basic_expr<Tag, Args, N>, void>
          : mpl::true_
        {};

        template<typename T>
        struct is_aggregate_<T, typename T::proto_is_aggregate_>
          : mpl::true_
        {};
    }

    /// \brief A Boolean metafunction that indicates whether a type requires
    /// aggregate initialization.
    ///
    /// <tt>is_aggregate\<\></tt> is used by the <tt>make\<\></tt> transform
    /// to determine how to construct an object of some type \c T, given some
    /// initialization arguments <tt>a0,a1,...aN</tt>.
    /// If <tt>is_aggregate\<T\>::value</tt> is \c true, then an object of
    /// type T will be initialized as <tt>T t = {a0,a1,...aN};</tt>. Otherwise,
    /// it will be initialized as <tt>T t(a0,a1,...aN)</tt>.
    template<typename T>
    struct is_aggregate
      : proto::detail::is_aggregate_<T>
    {};

    /// \brief A Boolean metafunction that indicates whether a given
    /// type \c T is a Proto expression type.
    ///
    /// If \c T has a nested type \c proto_is_expr_ that is a typedef
    /// for \c void, <tt>is_expr\<T\>::value</tt> is \c true. (Note, this
    /// is the case for <tt>proto::expr\<\></tt>, any type that is derived
    /// from <tt>proto::extends\<\></tt> or that uses the
    /// <tt>BOOST_PROTO_BASIC_EXTENDS()</tt> macro.) Otherwise,
    /// <tt>is_expr\<T\>::value</tt> is \c false.
    template<typename T, typename Void /* = void*/>
    struct is_expr
      : mpl::false_
    {};

    /// \brief A Boolean metafunction that indicates whether a given
    /// type \c T is a Proto expression type.
    ///
    /// If \c T has a nested type \c proto_is_expr_ that is a typedef
    /// for \c void, <tt>is_expr\<T\>::value</tt> is \c true. (Note, this
    /// is the case for <tt>proto::expr\<\></tt>, any type that is derived
    /// from <tt>proto::extends\<\></tt> or that uses the
    /// <tt>BOOST_PROTO_BASIC_EXTENDS()</tt> macro.) Otherwise,
    /// <tt>is_expr\<T\>::value</tt> is \c false.
    template<typename T>
    struct is_expr<T, typename T::proto_is_expr_>
      : mpl::true_
    {};
            
    template<typename T>
    struct is_expr<T &, void>
      : is_expr<T>
    {};

    /// \brief A metafunction that returns the tag type of a
    /// Proto expression.
    template<typename Expr>
    struct tag_of
    {
        typedef typename Expr::proto_tag type;
    };

    template<typename Expr>
    struct tag_of<Expr &>
    {
        typedef typename Expr::proto_tag type;
    };

    /// \brief A metafunction that returns the arity of a
    /// Proto expression.
    template<typename Expr>
    struct arity_of
      : Expr::proto_arity
    {};

    template<typename Expr>
    struct arity_of<Expr &>
      : Expr::proto_arity
    {};

    namespace result_of
    {
        /// \brief A metafunction that computes the return type of the \c as_expr()
        /// function.
        template<typename T, typename Domain /*= default_domain*/>
        struct as_expr
        {
            typedef typename Domain::template as_expr<T>::result_type type;
        };

        /// \brief A metafunction that computes the return type of the \c as_child()
        /// function.
        template<typename T, typename Domain /*= default_domain*/>
        struct as_child
        {
            typedef typename Domain::template as_child<T>::result_type type;
        };

        /// \brief A metafunction that returns the type of the Nth child
        /// of a Proto expression, where N is an MPL Integral Constant.
        ///
        /// <tt>result_of::child\<Expr, N\></tt> is equivalent to
        /// <tt>result_of::child_c\<Expr, N::value\></tt>.
        template<typename Expr, typename N /* = mpl::long_<0>*/>
        struct child
          : child_c<Expr, N::value>
        {};

        /// \brief A metafunction that returns the type of the value
        /// of a terminal Proto expression.
        ///
        template<typename Expr>
        struct value
        {
            /// Verify that we are actually operating on a terminal
            BOOST_STATIC_ASSERT(0 == Expr::proto_arity_c);

            /// The raw type of the Nth child as it is stored within
            /// \c Expr. This may be a value or a reference
            typedef typename Expr::proto_child0 value_type;

            /// The "value" type of the child, suitable for storage by value,
            /// computed as follows:
            /// \li <tt>T const(&)[N]</tt> becomes <tt>T[N]</tt>
            /// \li <tt>T[N]</tt> becomes <tt>T[N]</tt>
            /// \li <tt>T(&)[N]</tt> becomes <tt>T[N]</tt>
            /// \li <tt>R(&)(A0,...)</tt> becomes <tt>R(&)(A0,...)</tt>
            /// \li <tt>T const &</tt> becomes <tt>T</tt>
            /// \li <tt>T &</tt> becomes <tt>T</tt>
            /// \li <tt>T</tt> becomes <tt>T</tt>
            typedef typename detail::term_traits<typename Expr::proto_child0>::value_type type;
        };

        template<typename Expr>
        struct value<Expr &>
        {
            /// Verify that we are actually operating on a terminal
            BOOST_STATIC_ASSERT(0 == Expr::proto_arity_c);

            /// The raw type of the Nth child as it is stored within
            /// \c Expr. This may be a value or a reference
            typedef typename Expr::proto_child0 value_type;

            /// The "reference" type of the child, suitable for storage by
            /// reference, computed as follows:
            /// \li <tt>T const(&)[N]</tt> becomes <tt>T const(&)[N]</tt>
            /// \li <tt>T[N]</tt> becomes <tt>T(&)[N]</tt>
            /// \li <tt>T(&)[N]</tt> becomes <tt>T(&)[N]</tt>
            /// \li <tt>R(&)(A0,...)</tt> becomes <tt>R(&)(A0,...)</tt>
            /// \li <tt>T const &</tt> becomes <tt>T const &</tt>
            /// \li <tt>T &</tt> becomes <tt>T &</tt>
            /// \li <tt>T</tt> becomes <tt>T &</tt>
            typedef typename detail::term_traits<typename Expr::proto_child0>::reference type;
        };

        template<typename Expr>
        struct value<Expr const &>
        {
            /// Verify that we are actually operating on a terminal
            BOOST_STATIC_ASSERT(0 == Expr::proto_arity_c);

            /// The raw type of the Nth child as it is stored within
            /// \c Expr. This may be a value or a reference
            typedef typename Expr::proto_child0 value_type;

            /// The "const reference" type of the child, suitable for storage by
            /// const reference, computed as follows:
            /// \li <tt>T const(&)[N]</tt> becomes <tt>T const(&)[N]</tt>
            /// \li <tt>T[N]</tt> becomes <tt>T const(&)[N]</tt>
            /// \li <tt>T(&)[N]</tt> becomes <tt>T(&)[N]</tt>
            /// \li <tt>R(&)(A0,...)</tt> becomes <tt>R(&)(A0,...)</tt>
            /// \li <tt>T const &</tt> becomes <tt>T const &</tt>
            /// \li <tt>T &</tt> becomes <tt>T &</tt>
            /// \li <tt>T</tt> becomes <tt>T const &</tt>
            typedef typename detail::term_traits<typename Expr::proto_child0>::const_reference type;
        };

        /// \brief A metafunction that returns the type of the left child
        /// of a binary Proto expression.
        ///
        /// <tt>result_of::left\<Expr\></tt> is equivalent to
        /// <tt>result_of::child_c\<Expr, 0\></tt>.
        template<typename Expr>
        struct left
          : child_c<Expr, 0>
        {};

        /// \brief A metafunction that returns the type of the right child
        /// of a binary Proto expression.
        ///
        /// <tt>result_of::right\<Expr\></tt> is equivalent to
        /// <tt>result_of::child_c\<Expr, 1\></tt>.
        template<typename Expr>
        struct right
          : child_c<Expr, 1>
        {};

    } // namespace result_of

    /// \brief A metafunction for generating terminal expression types,
    /// a grammar element for matching terminal expressions, and a
    /// PrimitiveTransform that returns the current expression unchanged.
    template<typename T>
    struct terminal
      : proto::transform<terminal<T>, int>
    {
        typedef proto::expr<proto::tag::terminal, term<T>, 0> type;
        typedef proto::basic_expr<proto::tag::terminal, term<T>, 0> proto_grammar;

        template<typename Expr, typename State, typename Data>
        struct impl : transform_impl<Expr, State, Data>
        {
            typedef Expr result_type;

            /// \param e The current expression
            /// \pre <tt>matches\<Expr, terminal\<T\> \>::value</tt> is \c true.
            /// \return \c e
            /// \throw nothrow
            #ifdef BOOST_PROTO_STRICT_RESULT_OF
            result_type
            #else
            typename impl::expr_param
            #endif
            operator ()(
                typename impl::expr_param e
              , typename impl::state_param
              , typename impl::data_param
            ) const
            {
                return e;
            }
        };

        /// INTERNAL ONLY
        typedef proto::tag::terminal proto_tag;
        /// INTERNAL ONLY
        typedef T proto_child0;
    };

    /// \brief A metafunction for generating ternary conditional expression types,
    /// a grammar element for matching ternary conditional expressions, and a
    /// PrimitiveTransform that dispatches to the <tt>pass_through\<\></tt>
    /// transform.
    template<typename T, typename U, typename V>
    struct if_else_
      : proto::transform<if_else_<T, U, V>, int>
    {
        typedef proto::expr<proto::tag::if_else_, list3<T, U, V>, 3> type;
        typedef proto::basic_expr<proto::tag::if_else_, list3<T, U, V>, 3> proto_grammar;

        template<typename Expr, typename State, typename Data>
        struct impl
          : detail::pass_through_impl<if_else_, Expr, State, Data>
        {};

        /// INTERNAL ONLY
        typedef proto::tag::if_else_ proto_tag;
        /// INTERNAL ONLY
        typedef T proto_child0;
        /// INTERNAL ONLY
        typedef U proto_child1;
        /// INTERNAL ONLY
        typedef V proto_child2;
    };

    /// \brief A metafunction for generating nullary expression types with a
    /// specified tag type,
    /// a grammar element for matching nullary expressions, and a
    /// PrimitiveTransform that returns the current expression unchanged.
    ///
    /// Use <tt>nullary_expr\<_, _\></tt> as a grammar element to match any
    /// nullary expression.
    template<typename Tag, typename T>
    struct nullary_expr
      : proto::transform<nullary_expr<Tag, T>, int>
    {
        typedef proto::expr<Tag, term<T>, 0> type;
        typedef proto::basic_expr<Tag, term<T>, 0> proto_grammar;

        template<typename Expr, typename State, typename Data>
        struct impl : transform_impl<Expr, State, Data>
        {
            typedef Expr result_type;

            /// \param e The current expression
            /// \pre <tt>matches\<Expr, nullary_expr\<Tag, T\> \>::value</tt> is \c true.
            /// \return \c e
            /// \throw nothrow
            #ifdef BOOST_PROTO_STRICT_RESULT_OF
            result_type
            #else
            typename impl::expr_param
            #endif
            operator ()(
                typename impl::expr_param e
              , typename impl::state_param
              , typename impl::data_param
            ) const
            {
                return e;
            }
        };

        /// INTERNAL ONLY
        typedef Tag proto_tag;
        /// INTERNAL ONLY
        typedef T proto_child0;
    };

    /// \brief A metafunction for generating unary expression types with a
    /// specified tag type,
    /// a grammar element for matching unary expressions, and a
    /// PrimitiveTransform that dispatches to the <tt>pass_through\<\></tt>
    /// transform.
    ///
    /// Use <tt>unary_expr\<_, _\></tt> as a grammar element to match any
    /// unary expression.
    template<typename Tag, typename T>
    struct unary_expr
      : proto::transform<unary_expr<Tag, T>, int>
    {
        typedef proto::expr<Tag, list1<T>, 1> type;
        typedef proto::basic_expr<Tag, list1<T>, 1> proto_grammar;

        template<typename Expr, typename State, typename Data>
        struct impl
          : detail::pass_through_impl<unary_expr, Expr, State, Data>
        {};

        /// INTERNAL ONLY
        typedef Tag proto_tag;
        /// INTERNAL ONLY
        typedef T proto_child0;
    };

    /// \brief A metafunction for generating binary expression types with a
    /// specified tag type,
    /// a grammar element for matching binary expressions, and a
    /// PrimitiveTransform that dispatches to the <tt>pass_through\<\></tt>
    /// transform.
    ///
    /// Use <tt>binary_expr\<_, _, _\></tt> as a grammar element to match any
    /// binary expression.
    template<typename Tag, typename T, typename U>
    struct binary_expr
      : proto::transform<binary_expr<Tag, T, U>, int>
    {
        typedef proto::expr<Tag, list2<T, U>, 2> type;
        typedef proto::basic_expr<Tag, list2<T, U>, 2> proto_grammar;

        template<typename Expr, typename State, typename Data>
        struct impl
          : detail::pass_through_impl<binary_expr, Expr, State, Data>
        {};

        /// INTERNAL ONLY
        typedef Tag proto_tag;
        /// INTERNAL ONLY
        typedef T proto_child0;
        /// INTERNAL ONLY
        typedef U proto_child1;
    };

#define BOOST_PROTO_DEFINE_UNARY_METAFUNCTION(Op)                                               \
    template<typename T>                                                                        \
    struct Op                                                                                   \
      : proto::transform<Op<T>, int>                                                            \
    {                                                                                           \
        typedef proto::expr<proto::tag::Op, list1<T>, 1> type;                                  \
        typedef proto::basic_expr<proto::tag::Op, list1<T>, 1> proto_grammar;                   \
                                                                                                \
        template<typename Expr, typename State, typename Data>                                  \
        struct impl                                                                             \
          : detail::pass_through_impl<Op, Expr, State, Data>                                    \
        {};                                                                                     \
                                                                                                \
        typedef proto::tag::Op proto_tag;                                                       \
        typedef T proto_child0;                                                                 \
    };                                                                                          \
    /**/

#define BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(Op)                                              \
    template<typename T, typename U>                                                            \
    struct Op                                                                                   \
      : proto::transform<Op<T, U>, int>                                                         \
    {                                                                                           \
        typedef proto::expr<proto::tag::Op, list2<T, U>, 2> type;                               \
        typedef proto::basic_expr<proto::tag::Op, list2<T, U>, 2> proto_grammar;                \
                                                                                                \
        template<typename Expr, typename State, typename Data>                                  \
        struct impl                                                                             \
          : detail::pass_through_impl<Op, Expr, State, Data>                                    \
        {};                                                                                     \
                                                                                                \
        typedef proto::tag::Op proto_tag;                                                       \
        typedef T proto_child0;                                                                 \
        typedef U proto_child1;                                                                 \
    };                                                                                          \
    /**/

    BOOST_PROTO_DEFINE_UNARY_METAFUNCTION(unary_plus)
    BOOST_PROTO_DEFINE_UNARY_METAFUNCTION(negate)
    BOOST_PROTO_DEFINE_UNARY_METAFUNCTION(dereference)
    BOOST_PROTO_DEFINE_UNARY_METAFUNCTION(complement)
    BOOST_PROTO_DEFINE_UNARY_METAFUNCTION(address_of)
    BOOST_PROTO_DEFINE_UNARY_METAFUNCTION(logical_not)
    BOOST_PROTO_DEFINE_UNARY_METAFUNCTION(pre_inc)
    BOOST_PROTO_DEFINE_UNARY_METAFUNCTION(pre_dec)
    BOOST_PROTO_DEFINE_UNARY_METAFUNCTION(post_inc)
    BOOST_PROTO_DEFINE_UNARY_METAFUNCTION(post_dec)

    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(shift_left)
    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(shift_right)
    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(multiplies)
    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(divides)
    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(modulus)
    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(plus)
    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(minus)
    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(less)
    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(greater)
    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(less_equal)
    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(greater_equal)
    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(equal_to)
    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(not_equal_to)
    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(logical_or)
    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(logical_and)
    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(bitwise_or)
    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(bitwise_and)
    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(bitwise_xor)
    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(comma)
    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(mem_ptr)
    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(assign)
    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(shift_left_assign)
    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(shift_right_assign)
    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(multiplies_assign)
    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(divides_assign)
    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(modulus_assign)
    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(plus_assign)
    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(minus_assign)
    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(bitwise_or_assign)
    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(bitwise_and_assign)
    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(bitwise_xor_assign)
    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(subscript)
    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(member)

    #undef BOOST_PROTO_DEFINE_UNARY_METAFUNCTION
    #undef BOOST_PROTO_DEFINE_BINARY_METAFUNCTION

    #include <boost/proto/detail/traits.hpp>

    namespace functional
    {
        /// \brief A callable PolymorphicFunctionObject that is
        /// equivalent to the \c as_expr() function.
        template<typename Domain   /* = default_domain*/>
        struct as_expr
        {
            BOOST_PROTO_CALLABLE()

            template<typename Sig>
            struct result;

            template<typename This, typename T>
            struct result<This(T)>
            {
                typedef typename Domain::template as_expr<T>::result_type type;
            };

            template<typename This, typename T>
            struct result<This(T &)>
            {
                typedef typename Domain::template as_expr<T>::result_type type;
            };

            /// \brief Wrap an object in a Proto terminal if it isn't a
            /// Proto expression already.
            /// \param t The object to wrap.
            /// \return <tt>proto::as_expr\<Domain\>(t)</tt>
            template<typename T>
            typename add_const<typename result<as_expr(T &)>::type>::type
            operator ()(T &t) const
            {
                return typename Domain::template as_expr<T>()(t);
            }

            /// \overload
            ///
            template<typename T>
            typename add_const<typename result<as_expr(T const &)>::type>::type
            operator ()(T const &t) const
            {
                return typename Domain::template as_expr<T const>()(t);
            }

            #if BOOST_WORKAROUND(BOOST_MSVC, == 1310)
            template<typename T, std::size_t N_>
            typename add_const<typename result<as_expr(T (&)[N_])>::type>::type
            operator ()(T (&t)[N_]) const
            {
                return typename Domain::template as_expr<T[N_]>()(t);
            }

            template<typename T, std::size_t N_>
            typename add_const<typename result<as_expr(T const (&)[N_])>::type>::type
            operator ()(T const (&t)[N_]) const
            {
                return typename Domain::template as_expr<T const[N_]>()(t);
            }
            #endif
        };

        /// \brief A callable PolymorphicFunctionObject that is
        /// equivalent to the \c as_child() function.
        template<typename Domain   /* = default_domain*/>
        struct as_child
        {
            BOOST_PROTO_CALLABLE()

            template<typename Sig>
            struct result;

            template<typename This, typename T>
            struct result<This(T)>
            {
                typedef typename Domain::template as_child<T>::result_type type;
            };

            template<typename This, typename T>
            struct result<This(T &)>
            {
                typedef typename Domain::template as_child<T>::result_type type;
            };

            /// \brief Wrap an object in a Proto terminal if it isn't a
            /// Proto expression already.
            /// \param t The object to wrap.
            /// \return <tt>proto::as_child\<Domain\>(t)</tt>
            template<typename T>
            typename add_const<typename result<as_child(T &)>::type>::type
            operator ()(T &t) const
            {
                return typename Domain::template as_child<T>()(t);
            }

            /// \overload
            ///
            template<typename T>
            typename add_const<typename result<as_child(T const &)>::type>::type
            operator ()(T const &t) const
            {
                return typename Domain::template as_child<T const>()(t);
            }
        };

        /// \brief A callable PolymorphicFunctionObject that is
        /// equivalent to the \c child_c() function.
        template<long N>
        struct child_c
        {
            BOOST_PROTO_CALLABLE()

            template<typename Sig>
            struct result;

            template<typename This, typename Expr>
            struct result<This(Expr)>
            {
                typedef typename result_of::child_c<Expr, N>::type type;
            };

            /// \brief Return the Nth child of the given expression.
            /// \param expr The expression node.
            /// \pre <tt>is_expr\<Expr\>::value</tt> is \c true
            /// \pre <tt>N \< Expr::proto_arity::value</tt>
            /// \return <tt>proto::child_c\<N\>(expr)</tt>
            /// \throw nothrow
            template<typename Expr>
            typename result_of::child_c<Expr &, N>::type
            operator ()(Expr &e) const
            {
                return result_of::child_c<Expr &, N>::call(e);
            }

            /// \overload
            ///
            template<typename Expr>
            typename result_of::child_c<Expr const &, N>::type
            operator ()(Expr const &e) const
            {
                return result_of::child_c<Expr const &, N>::call(e);
            }
        };

        /// \brief A callable PolymorphicFunctionObject that is
        /// equivalent to the \c child() function.
        ///
        /// A callable PolymorphicFunctionObject that is
        /// equivalent to the \c child() function. \c N is required
        /// to be an MPL Integral Constant.
        template<typename N /* = mpl::long_<0>*/>
        struct child
        {
            BOOST_PROTO_CALLABLE()

            template<typename Sig>
            struct result;

            template<typename This, typename Expr>
            struct result<This(Expr)>
            {
                typedef typename result_of::child<Expr, N>::type type;
            };

            /// \brief Return the Nth child of the given expression.
            /// \param expr The expression node.
            /// \pre <tt>is_expr\<Expr\>::value</tt> is \c true
            /// \pre <tt>N::value \< Expr::proto_arity::value</tt>
            /// \return <tt>proto::child\<N\>(expr)</tt>
            /// \throw nothrow
            template<typename Expr>
            typename result_of::child<Expr &, N>::type
            operator ()(Expr &e) const
            {
                return result_of::child<Expr &, N>::call(e);
            }

            /// \overload
            ///
            template<typename Expr>
            typename result_of::child<Expr const &, N>::type
            operator ()(Expr const &e) const
            {
                return result_of::child<Expr const &, N>::call(e);
            }
        };

        /// \brief A callable PolymorphicFunctionObject that is
        /// equivalent to the \c value() function.
        struct value
        {
            BOOST_PROTO_CALLABLE()

            template<typename Sig>
            struct result;

            template<typename This, typename Expr>
            struct result<This(Expr)>
            {
                typedef typename result_of::value<Expr>::type type;
            };

            /// \brief Return the value of the given terminal expression.
            /// \param expr The terminal expression node.
            /// \pre <tt>is_expr\<Expr\>::value</tt> is \c true
            /// \pre <tt>0 == Expr::proto_arity::value</tt>
            /// \return <tt>proto::value(expr)</tt>
            /// \throw nothrow
            template<typename Expr>
            typename result_of::value<Expr &>::type
            operator ()(Expr &e) const
            {
                return e.proto_base().child0;
            }

            /// \overload
            ///
            template<typename Expr>
            typename result_of::value<Expr const &>::type
            operator ()(Expr const &e) const
            {
                return e.proto_base().child0;
            }
        };

        /// \brief A callable PolymorphicFunctionObject that is
        /// equivalent to the \c left() function.
        struct left
        {
            BOOST_PROTO_CALLABLE()

            template<typename Sig>
            struct result;

            template<typename This, typename Expr>
            struct result<This(Expr)>
            {
                typedef typename result_of::left<Expr>::type type;
            };

            /// \brief Return the left child of the given binary expression.
            /// \param expr The expression node.
            /// \pre <tt>is_expr\<Expr\>::value</tt> is \c true
            /// \pre <tt>2 == Expr::proto_arity::value</tt>
            /// \return <tt>proto::left(expr)</tt>
            /// \throw nothrow
            template<typename Expr>
            typename result_of::left<Expr &>::type
            operator ()(Expr &e) const
            {
                return e.proto_base().child0;
            }

            /// \overload
            ///
            template<typename Expr>
            typename result_of::left<Expr const &>::type
            operator ()(Expr const &e) const
            {
                return e.proto_base().child0;
            }
        };

        /// \brief A callable PolymorphicFunctionObject that is
        /// equivalent to the \c right() function.
        struct right
        {
            BOOST_PROTO_CALLABLE()

            template<typename Sig>
            struct result;

            template<typename This, typename Expr>
            struct result<This(Expr)>
            {
                typedef typename result_of::right<Expr>::type type;
            };

            /// \brief Return the right child of the given binary expression.
            /// \param expr The expression node.
            /// \pre <tt>is_expr\<Expr\>::value</tt> is \c true
            /// \pre <tt>2 == Expr::proto_arity::value</tt>
            /// \return <tt>proto::right(expr)</tt>
            /// \throw nothrow
            template<typename Expr>
            typename result_of::right<Expr &>::type
            operator ()(Expr &e) const
            {
                return e.proto_base().child1;
            }

            template<typename Expr>
            typename result_of::right<Expr const &>::type
            operator ()(Expr const &e) const
            {
                return e.proto_base().child1;
            }
        };

    }

    /// \brief A function that wraps non-Proto expression types in Proto
    /// terminals and leaves Proto expression types alone.
    ///
    /// The <tt>as_expr()</tt> function turns objects into Proto terminals if
    /// they are not Proto expression types already. Non-Proto types are
    /// held by value, if possible. Types which are already Proto types are
    /// left alone and returned by reference.
    ///
    /// This function can be called either with an explicitly specified
    /// \c Domain parameter (i.e., <tt>as_expr\<Domain\>(t)</tt>), or
    /// without (i.e., <tt>as_expr(t)</tt>). If no domain is
    /// specified, \c default_domain is assumed.
    ///
    /// If <tt>is_expr\<T\>::value</tt> is \c true, then the argument is
    /// returned unmodified, by reference. Otherwise, the argument is wrapped
    /// in a Proto terminal expression node according to the following rules.
    /// If \c T is a function type, let \c A be <tt>T &</tt>. Otherwise, let
    /// \c A be the type \c T stripped of cv-qualifiers. Then, \c as_expr()
    /// returns <tt>Domain()(terminal\<A\>::type::make(t))</tt>.
    ///
    /// \param t The object to wrap.
    template<typename T>
    typename add_const<typename result_of::as_expr<T, default_domain>::type>::type
    as_expr(T &t BOOST_PROTO_DISABLE_IF_IS_CONST(T) BOOST_PROTO_DISABLE_IF_IS_FUNCTION(T))
    {
        return default_domain::as_expr<T>()(t);
    }

    /// \overload
    ///
    template<typename T>
    typename add_const<typename result_of::as_expr<T const, default_domain>::type>::type
    as_expr(T const &t)
    {
        return default_domain::as_expr<T const>()(t);
    }

    /// \overload
    ///
    template<typename Domain, typename T>
    typename add_const<typename result_of::as_expr<T, Domain>::type>::type
    as_expr(T &t BOOST_PROTO_DISABLE_IF_IS_CONST(T) BOOST_PROTO_DISABLE_IF_IS_FUNCTION(T))
    {
        return typename Domain::template as_expr<T>()(t);
    }

    /// \overload
    ///
    template<typename Domain, typename T>
    typename add_const<typename result_of::as_expr<T const, Domain>::type>::type
    as_expr(T const &t)
    {
        return typename Domain::template as_expr<T const>()(t);
    }

    /// \brief A function that wraps non-Proto expression types in Proto
    /// terminals (by reference) and returns Proto expression types by
    /// reference
    ///
    /// The <tt>as_child()</tt> function turns objects into Proto terminals if
    /// they are not Proto expression types already. Non-Proto types are
    /// held by reference. Types which are already Proto types are simply
    /// returned as-is.
    ///
    /// This function can be called either with an explicitly specified
    /// \c Domain parameter (i.e., <tt>as_child\<Domain\>(t)</tt>), or
    /// without (i.e., <tt>as_child(t)</tt>). If no domain is
    /// specified, \c default_domain is assumed.
    ///
    /// If <tt>is_expr\<T\>::value</tt> is \c true, then the argument is
    /// returned as-is. Otherwise, \c as_child() returns
    /// <tt>Domain()(terminal\<T &\>::type::make(t))</tt>.
    ///
    /// \param t The object to wrap.
    template<typename T>
    typename add_const<typename result_of::as_child<T, default_domain>::type>::type
    as_child(T &t BOOST_PROTO_DISABLE_IF_IS_CONST(T) BOOST_PROTO_DISABLE_IF_IS_FUNCTION(T))
    {
        return default_domain::as_child<T>()(t);
    }

    /// \overload
    ///
    template<typename T>
    typename add_const<typename result_of::as_child<T const, default_domain>::type>::type
    as_child(T const &t)
    {
        return default_domain::as_child<T const>()(t);
    }

    /// \overload
    ///
    template<typename Domain, typename T>
    typename add_const<typename result_of::as_child<T, Domain>::type>::type
    as_child(T &t BOOST_PROTO_DISABLE_IF_IS_CONST(T) BOOST_PROTO_DISABLE_IF_IS_FUNCTION(T))
    {
        return typename Domain::template as_child<T>()(t);
    }

    /// \overload
    ///
    template<typename Domain, typename T>
    typename add_const<typename result_of::as_child<T const, Domain>::type>::type
    as_child(T const &t)
    {
        return typename Domain::template as_child<T const>()(t);
    }

    /// \brief Return the Nth child of the specified Proto expression.
    ///
    /// Return the Nth child of the specified Proto expression. If
    /// \c N is not specified, as in \c child(expr), then \c N is assumed
    /// to be <tt>mpl::long_\<0\></tt>. The child is returned by
    /// reference.
    ///
    /// \param expr The Proto expression.
    /// \pre <tt>is_expr\<Expr\>::value</tt> is \c true.
    /// \pre \c N is an MPL Integral Constant.
    /// \pre <tt>N::value \< Expr::proto_arity::value</tt>
    /// \throw nothrow
    /// \return A reference to the Nth child
    template<typename N, typename Expr>
    typename result_of::child<Expr &, N>::type
    child(Expr &e BOOST_PROTO_DISABLE_IF_IS_CONST(Expr))
    {
        return result_of::child<Expr &, N>::call(e);
    }

    /// \overload
    ///
    template<typename N, typename Expr>
    typename result_of::child<Expr const &, N>::type
    child(Expr const &e)
    {
        return result_of::child<Expr const &, N>::call(e);
    }

    /// \overload
    ///
    template<typename Expr2>
    typename detail::expr_traits<typename Expr2::proto_base_expr::proto_child0>::reference
    child(Expr2 &expr2 BOOST_PROTO_DISABLE_IF_IS_CONST(Expr2))
    {
        return expr2.proto_base().child0;
    }

    /// \overload
    ///
    template<typename Expr2>
    typename detail::expr_traits<typename Expr2::proto_base_expr::proto_child0>::const_reference
    child(Expr2 const &expr2)
    {
        return expr2.proto_base().child0;
    }

    /// \brief Return the Nth child of the specified Proto expression.
    ///
    /// Return the Nth child of the specified Proto expression. The child
    /// is returned by reference.
    ///
    /// \param expr The Proto expression.
    /// \pre <tt>is_expr\<Expr\>::value</tt> is \c true.
    /// \pre <tt>N \< Expr::proto_arity::value</tt>
    /// \throw nothrow
    /// \return A reference to the Nth child
    template<long N, typename Expr>
    typename result_of::child_c<Expr &, N>::type
    child_c(Expr &e BOOST_PROTO_DISABLE_IF_IS_CONST(Expr))
    {
        return result_of::child_c<Expr &, N>::call(e);
    }

    /// \overload
    ///
    template<long N, typename Expr>
    typename result_of::child_c<Expr const &, N>::type
    child_c(Expr const &e)
    {
        return result_of::child_c<Expr const &, N>::call(e);
    }

    /// \brief Return the value stored within the specified Proto
    /// terminal expression.
    ///
    /// Return the the value stored within the specified Proto
    /// terminal expression. The value is returned by
    /// reference.
    ///
    /// \param expr The Proto terminal expression.
    /// \pre <tt>N::value == 0</tt>
    /// \throw nothrow
    /// \return A reference to the terminal's value
    template<typename Expr>
    typename result_of::value<Expr &>::type
    value(Expr &e BOOST_PROTO_DISABLE_IF_IS_CONST(Expr))
    {
        return e.proto_base().child0;
    }

    /// \overload
    ///
    template<typename Expr>
    typename result_of::value<Expr const &>::type
    value(Expr const &e)
    {
        return e.proto_base().child0;
    }

    /// \brief Return the left child of the specified binary Proto
    /// expression.
    ///
    /// Return the left child of the specified binary Proto expression. The
    /// child is returned by reference.
    ///
    /// \param expr The Proto expression.
    /// \pre <tt>is_expr\<Expr\>::value</tt> is \c true.
    /// \pre <tt>2 == Expr::proto_arity::value</tt>
    /// \throw nothrow
    /// \return A reference to the left child
    template<typename Expr>
    typename result_of::left<Expr &>::type
    left(Expr &e BOOST_PROTO_DISABLE_IF_IS_CONST(Expr))
    {
        return e.proto_base().child0;
    }

    /// \overload
    ///
    template<typename Expr>
    typename result_of::left<Expr const &>::type
    left(Expr const &e)
    {
        return e.proto_base().child0;
    }

    /// \brief Return the right child of the specified binary Proto
    /// expression.
    ///
    /// Return the right child of the specified binary Proto expression. The
    /// child is returned by reference.
    ///
    /// \param expr The Proto expression.
    /// \pre <tt>is_expr\<Expr\>::value</tt> is \c true.
    /// \pre <tt>2 == Expr::proto_arity::value</tt>
    /// \throw nothrow
    /// \return A reference to the right child
    template<typename Expr>
    typename result_of::right<Expr &>::type
    right(Expr &e BOOST_PROTO_DISABLE_IF_IS_CONST(Expr))
    {
        return e.proto_base().child1;
    }

    /// \overload
    ///
    template<typename Expr>
    typename result_of::right<Expr const &>::type
    right(Expr const &e)
    {
        return e.proto_base().child1;
    }

    /// INTERNAL ONLY
    ///
    template<typename Domain>
    struct is_callable<functional::as_expr<Domain> >
      : mpl::true_
    {};

    /// INTERNAL ONLY
    ///
    template<typename Domain>
    struct is_callable<functional::as_child<Domain> >
      : mpl::true_
    {};

    /// INTERNAL ONLY
    ///
    template<long N>
    struct is_callable<functional::child_c<N> >
      : mpl::true_
    {};

    /// INTERNAL ONLY
    ///
    template<typename N>
    struct is_callable<functional::child<N> >
      : mpl::true_
    {};

}}

#if BOOST_WORKAROUND( BOOST_MSVC, >= 1400 )
    #pragma warning(pop)
#endif

#endif