boost/numeric/ublas/matrix.hpp
//
// Copyright (c) 2000-2010
// Joerg Walter, Mathias Koch, Gunter Winkler, David Bellot
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef _BOOST_UBLAS_MATRIX_
#define _BOOST_UBLAS_MATRIX_
#include <boost/numeric/ublas/vector.hpp>
#include <boost/numeric/ublas/matrix_expression.hpp>
#include <boost/numeric/ublas/detail/matrix_assign.hpp>
#include <boost/serialization/collection_size_type.hpp>
#include <boost/serialization/array.hpp>
#include <boost/serialization/nvp.hpp>
// Iterators based on ideas of Jeremy Siek
namespace boost { namespace numeric {
/** \brief main namespace of uBLAS.
*
* Use this namespace for all operations with uBLAS. It can also be abbreviated with
* \code namespace ublas = boost::numeric::ublas; \endcode
*
* A common practice is to bring this namespace into the current scope with
* \code using namespace boost::numeric::ublas; \endcode.
*
* However, be warned that using the ublas namespace and the std::vector at the same time can lead to the compiler to confusion.
* The solution is simply to prefix each ublas vector like \c boost::numeric::ublas::vector<T>. If you think it's too long to
* write, you can define a new namespace like \c namespace ublas = boost::numeric::ublas and then just declare your vectors
* with \c ublas::vector<T>. STL vectors will be declared as vector<T>. No need to prefix with \c std::
*/
namespace ublas {
namespace detail {
using namespace boost::numeric::ublas;
// Matrix resizing algorithm
template <class L, class M>
BOOST_UBLAS_INLINE
void matrix_resize_preserve (M& m, M& temporary) {
typedef L layout_type;
typedef typename M::size_type size_type;
const size_type msize1 (m.size1 ()); // original size
const size_type msize2 (m.size2 ());
const size_type size1 (temporary.size1 ()); // new size is specified by temporary
const size_type size2 (temporary.size2 ());
// Common elements to preserve
const size_type size1_min = (std::min) (size1, msize1);
const size_type size2_min = (std::min) (size2, msize2);
// Order for major and minor sizes
const size_type major_size = layout_type::size_M (size1_min, size2_min);
const size_type minor_size = layout_type::size_m (size1_min, size2_min);
// Indexing copy over major
for (size_type major = 0; major != major_size; ++major) {
for (size_type minor = 0; minor != minor_size; ++minor) {
// find indexes - use invertability of element_ functions
const size_type i1 = layout_type::index_M(major, minor);
const size_type i2 = layout_type::index_m(major, minor);
temporary.data () [layout_type::element (i1, size1, i2, size2)] =
m.data() [layout_type::element (i1, msize1, i2, msize2)];
}
}
m.assign_temporary (temporary);
}
}
/** \brief A dense matrix of values of type \c T.
*
* For a \f$(m \times n)\f$-dimensional matrix and \f$ 0 \leq i < m, 0 \leq j < n\f$, every element \f$ m_{i,j} \f$ is mapped to
* the \f$(i.n + j)\f$-th element of the container for row major orientation or the \f$ (i + j.m) \f$-th element of
* the container for column major orientation. In a dense matrix all elements are represented in memory in a
* contiguous chunk of memory by definition.
*
* Orientation and storage can also be specified, otherwise a \c row_major and \c unbounded_array are used. It is \b not
* required by the storage to initialize elements of the matrix.
*
* \tparam T the type of object stored in the matrix (like double, float, complex, etc...)
* \tparam L the storage organization. It can be either \c row_major or \c column_major. Default is \c row_major
* \tparam A the type of Storage array. Default is \c unbounded_array
*/
template<class T, class L, class A>
class matrix:
public matrix_container<matrix<T, L, A> > {
typedef T *pointer;
typedef L layout_type;
typedef matrix<T, L, A> self_type;
public:
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
using matrix_container<self_type>::operator ();
#endif
typedef typename A::size_type size_type;
typedef typename A::difference_type difference_type;
typedef T value_type;
typedef const T &const_reference;
typedef T &reference;
typedef A array_type;
typedef const matrix_reference<const self_type> const_closure_type;
typedef matrix_reference<self_type> closure_type;
typedef vector<T, A> vector_temporary_type;
typedef self_type matrix_temporary_type;
typedef dense_tag storage_category;
// This could be better for performance,
// typedef typename unknown_orientation_tag orientation_category;
// but others depend on the orientation information...
typedef typename L::orientation_category orientation_category;
// Construction and destruction
/// Default dense matrix constructor. Make a dense matrix of size (0,0)
BOOST_UBLAS_INLINE
matrix ():
matrix_container<self_type> (),
size1_ (0), size2_ (0), data_ () {}
/** Dense matrix constructor with defined size
* \param size1 number of rows
* \param size2 number of columns
*/
BOOST_UBLAS_INLINE
matrix (size_type size1, size_type size2):
matrix_container<self_type> (),
size1_ (size1), size2_ (size2), data_ (layout_type::storage_size (size1, size2)) {
}
/** Dense matrix constructor with defined size a initial value for all the matrix elements
* \param size1 number of rows
* \param size2 number of columns
* \param init initial value assigned to all elements
*/
matrix (size_type size1, size_type size2, const value_type &init):
matrix_container<self_type> (),
size1_ (size1), size2_ (size2), data_ (layout_type::storage_size (size1, size2), init) {
}
/** Dense matrix constructor with defined size and an initial data array
* \param size1 number of rows
* \param size2 number of columns
* \param data array to copy into the matrix. Must have the same dimension as the matrix
*/
BOOST_UBLAS_INLINE
matrix (size_type size1, size_type size2, const array_type &data):
matrix_container<self_type> (),
size1_ (size1), size2_ (size2), data_ (data) {}
/** Copy-constructor of a dense matrix
* \param m is a dense matrix
*/
BOOST_UBLAS_INLINE
matrix (const matrix &m):
matrix_container<self_type> (),
size1_ (m.size1_), size2_ (m.size2_), data_ (m.data_) {}
/** Copy-constructor of a dense matrix from a matrix expression
* \param ae is a matrix expression
*/
template<class AE>
BOOST_UBLAS_INLINE
matrix (const matrix_expression<AE> &ae):
matrix_container<self_type> (),
size1_ (ae ().size1 ()), size2_ (ae ().size2 ()), data_ (layout_type::storage_size (size1_, size2_)) {
matrix_assign<scalar_assign> (*this, ae);
}
// Accessors
/** Return the number of rows of the matrix
* You can also use the free size<>() function in operation/size.hpp as size<1>(m) where m is a matrix
*/
BOOST_UBLAS_INLINE
size_type size1 () const {
return size1_;
}
/** Return the number of colums of the matrix
* You can also use the free size<>() function in operation/size.hpp as size<2>(m) where m is a matrix
*/
BOOST_UBLAS_INLINE
size_type size2 () const {
return size2_;
}
// Storage accessors
/** Return a constant reference to the internal storage of a dense matrix, i.e. the raw data
* It's type depends on the type used by the matrix to store its data
*/
BOOST_UBLAS_INLINE
const array_type &data () const {
return data_;
}
/** Return a reference to the internal storage of a dense matrix, i.e. the raw data
* It's type depends on the type used by the matrix to store its data
*/
BOOST_UBLAS_INLINE
array_type &data () {
return data_;
}
// Resizing
/** Resize a matrix to new dimensions
* If data are preserved, then if the size if bigger at least on one dimension, extra values are filled with zeros.
* If data are not preserved, then nothing has to be assumed regarding the content of the matrix after resizing.
* \param size1 the new number of rows
* \param size2 the new number of colums
* \param preserve a boolean to say if one wants the data to be preserved during the resizing. Default is true.
*/
BOOST_UBLAS_INLINE
void resize (size_type size1, size_type size2, bool preserve = true) {
if (preserve) {
self_type temporary (size1, size2);
detail::matrix_resize_preserve<layout_type> (*this, temporary);
}
else {
data ().resize (layout_type::storage_size (size1, size2));
size1_ = size1;
size2_ = size2;
}
}
// Element access
BOOST_UBLAS_INLINE
const_reference operator () (size_type i, size_type j) const {
return data () [layout_type::element (i, size1_, j, size2_)];
}
BOOST_UBLAS_INLINE
reference at_element (size_type i, size_type j) {
return data () [layout_type::element (i, size1_, j, size2_)];
}
BOOST_UBLAS_INLINE
reference operator () (size_type i, size_type j) {
return at_element (i, j);
}
// Element assignment
BOOST_UBLAS_INLINE
reference insert_element (size_type i, size_type j, const_reference t) {
return (at_element (i, j) = t);
}
void erase_element (size_type i, size_type j) {
at_element (i, j) = value_type/*zero*/();
}
// Zeroing
BOOST_UBLAS_INLINE
void clear () {
std::fill (data ().begin (), data ().end (), value_type/*zero*/());
}
// Assignment
#ifdef BOOST_UBLAS_MOVE_SEMANTICS
/*! @note "pass by value" the key idea to enable move semantics */
BOOST_UBLAS_INLINE
matrix &operator = (matrix m) {
assign_temporary(m);
return *this;
}
#else
BOOST_UBLAS_INLINE
matrix &operator = (const matrix &m) {
size1_ = m.size1_;
size2_ = m.size2_;
data () = m.data ();
return *this;
}
#endif
template<class C> // Container assignment without temporary
BOOST_UBLAS_INLINE
matrix &operator = (const matrix_container<C> &m) {
resize (m ().size1 (), m ().size2 (), false);
assign (m);
return *this;
}
BOOST_UBLAS_INLINE
matrix &assign_temporary (matrix &m) {
swap (m);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
matrix &operator = (const matrix_expression<AE> &ae) {
self_type temporary (ae);
return assign_temporary (temporary);
}
template<class AE>
BOOST_UBLAS_INLINE
matrix &assign (const matrix_expression<AE> &ae) {
matrix_assign<scalar_assign> (*this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
matrix& operator += (const matrix_expression<AE> &ae) {
self_type temporary (*this + ae);
return assign_temporary (temporary);
}
template<class C> // Container assignment without temporary
BOOST_UBLAS_INLINE
matrix &operator += (const matrix_container<C> &m) {
plus_assign (m);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
matrix &plus_assign (const matrix_expression<AE> &ae) {
matrix_assign<scalar_plus_assign> (*this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
matrix& operator -= (const matrix_expression<AE> &ae) {
self_type temporary (*this - ae);
return assign_temporary (temporary);
}
template<class C> // Container assignment without temporary
BOOST_UBLAS_INLINE
matrix &operator -= (const matrix_container<C> &m) {
minus_assign (m);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
matrix &minus_assign (const matrix_expression<AE> &ae) {
matrix_assign<scalar_minus_assign> (*this, ae);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
matrix& operator *= (const AT &at) {
matrix_assign_scalar<scalar_multiplies_assign> (*this, at);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
matrix& operator /= (const AT &at) {
matrix_assign_scalar<scalar_divides_assign> (*this, at);
return *this;
}
// Swapping
BOOST_UBLAS_INLINE
void swap (matrix &m) {
if (this != &m) {
std::swap (size1_, m.size1_);
std::swap (size2_, m.size2_);
data ().swap (m.data ());
}
}
BOOST_UBLAS_INLINE
friend void swap (matrix &m1, matrix &m2) {
m1.swap (m2);
}
// Iterator types
private:
// Use the storage array iterator
typedef typename A::const_iterator const_subiterator_type;
typedef typename A::iterator subiterator_type;
public:
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
typedef indexed_iterator1<self_type, dense_random_access_iterator_tag> iterator1;
typedef indexed_iterator2<self_type, dense_random_access_iterator_tag> iterator2;
typedef indexed_const_iterator1<self_type, dense_random_access_iterator_tag> const_iterator1;
typedef indexed_const_iterator2<self_type, dense_random_access_iterator_tag> const_iterator2;
#else
class const_iterator1;
class iterator1;
class const_iterator2;
class iterator2;
#endif
typedef reverse_iterator_base1<const_iterator1> const_reverse_iterator1;
typedef reverse_iterator_base1<iterator1> reverse_iterator1;
typedef reverse_iterator_base2<const_iterator2> const_reverse_iterator2;
typedef reverse_iterator_base2<iterator2> reverse_iterator2;
// Element lookup
BOOST_UBLAS_INLINE
const_iterator1 find1 (int /* rank */, size_type i, size_type j) const {
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
return const_iterator1 (*this, i, j);
#else
return const_iterator1 (*this, data ().begin () + layout_type::address (i, size1_, j, size2_));
#endif
}
BOOST_UBLAS_INLINE
iterator1 find1 (int /* rank */, size_type i, size_type j) {
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
return iterator1 (*this, i, j);
#else
return iterator1 (*this, data ().begin () + layout_type::address (i, size1_, j, size2_));
#endif
}
BOOST_UBLAS_INLINE
const_iterator2 find2 (int /* rank */, size_type i, size_type j) const {
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
return const_iterator2 (*this, i, j);
#else
return const_iterator2 (*this, data ().begin () + layout_type::address (i, size1_, j, size2_));
#endif
}
BOOST_UBLAS_INLINE
iterator2 find2 (int /* rank */, size_type i, size_type j) {
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
return iterator2 (*this, i, j);
#else
return iterator2 (*this, data ().begin () + layout_type::address (i, size1_, j, size2_));
#endif
}
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class const_iterator1:
public container_const_reference<matrix>,
public random_access_iterator_base<dense_random_access_iterator_tag,
const_iterator1, value_type> {
public:
typedef typename matrix::value_type value_type;
typedef typename matrix::difference_type difference_type;
typedef typename matrix::const_reference reference;
typedef const typename matrix::pointer pointer;
typedef const_iterator2 dual_iterator_type;
typedef const_reverse_iterator2 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator1 ():
container_const_reference<self_type> (), it_ () {}
BOOST_UBLAS_INLINE
const_iterator1 (const self_type &m, const const_subiterator_type &it):
container_const_reference<self_type> (m), it_ (it) {}
BOOST_UBLAS_INLINE
const_iterator1 (const iterator1 &it):
container_const_reference<self_type> (it ()), it_ (it.it_) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator1 &operator ++ () {
layout_type::increment_i (it_, (*this) ().size1 (), (*this) ().size2 ());
return *this;
}
BOOST_UBLAS_INLINE
const_iterator1 &operator -- () {
layout_type::decrement_i (it_, (*this) ().size1 (), (*this) ().size2 ());
return *this;
}
BOOST_UBLAS_INLINE
const_iterator1 &operator += (difference_type n) {
layout_type::increment_i (it_, n, (*this) ().size1 (), (*this) ().size2 ());
return *this;
}
BOOST_UBLAS_INLINE
const_iterator1 &operator -= (difference_type n) {
layout_type::decrement_i (it_, n, (*this) ().size1 (), (*this) ().size2 ());
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const const_iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return layout_type::distance_i (it_ - it.it_, (*this) ().size1 (), (*this) ().size2 ());
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ());
BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ());
return *it_;
}
BOOST_UBLAS_INLINE
const_reference operator [] (difference_type n) const {
return *(*this + n);
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator2 begin () const {
const self_type &m = (*this) ();
return m.find2 (1, index1 (), 0);
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator2 end () const {
const self_type &m = (*this) ();
return m.find2 (1, index1 (), m.size2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator2 rbegin () const {
return const_reverse_iterator2 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator2 rend () const {
return const_reverse_iterator2 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
const self_type &m = (*this) ();
return layout_type::index_i (it_ - m.begin1 ().it_, m.size1 (), m.size2 ());
}
BOOST_UBLAS_INLINE
size_type index2 () const {
const self_type &m = (*this) ();
return layout_type::index_j (it_ - m.begin1 ().it_, m.size1 (), m.size2 ());
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator1 &operator = (const const_iterator1 &it) {
container_const_reference<self_type>::assign (&it ());
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it_ == it.it_;
}
BOOST_UBLAS_INLINE
bool operator < (const const_iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it_ < it.it_;
}
private:
const_subiterator_type it_;
friend class iterator1;
};
#endif
BOOST_UBLAS_INLINE
const_iterator1 begin1 () const {
return find1 (0, 0, 0);
}
BOOST_UBLAS_INLINE
const_iterator1 end1 () const {
return find1 (0, size1_, 0);
}
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class iterator1:
public container_reference<matrix>,
public random_access_iterator_base<dense_random_access_iterator_tag,
iterator1, value_type> {
public:
typedef typename matrix::value_type value_type;
typedef typename matrix::difference_type difference_type;
typedef typename matrix::reference reference;
typedef typename matrix::pointer pointer;
typedef iterator2 dual_iterator_type;
typedef reverse_iterator2 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
iterator1 ():
container_reference<self_type> (), it_ () {}
BOOST_UBLAS_INLINE
iterator1 (self_type &m, const subiterator_type &it):
container_reference<self_type> (m), it_ (it) {}
// Arithmetic
BOOST_UBLAS_INLINE
iterator1 &operator ++ () {
layout_type::increment_i (it_, (*this) ().size1 (), (*this) ().size2 ());
return *this;
}
BOOST_UBLAS_INLINE
iterator1 &operator -- () {
layout_type::decrement_i (it_, (*this) ().size1 (), (*this) ().size2 ());
return *this;
}
BOOST_UBLAS_INLINE
iterator1 &operator += (difference_type n) {
layout_type::increment_i (it_, n, (*this) ().size1 (), (*this) ().size2 ());
return *this;
}
BOOST_UBLAS_INLINE
iterator1 &operator -= (difference_type n) {
layout_type::decrement_i (it_, n, (*this) ().size1 (), (*this) ().size2 ());
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return layout_type::distance_i (it_ - it.it_, (*this) ().size1 (), (*this) ().size2 ());
}
// Dereference
BOOST_UBLAS_INLINE
reference operator * () const {
BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ());
BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ());
return *it_;
}
BOOST_UBLAS_INLINE
reference operator [] (difference_type n) const {
return *(*this + n);
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator2 begin () const {
self_type &m = (*this) ();
return m.find2 (1, index1 (), 0);
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator2 end () const {
self_type &m = (*this) ();
return m.find2 (1, index1 (), m.size2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator2 rbegin () const {
return reverse_iterator2 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator2 rend () const {
return reverse_iterator2 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
self_type &m = (*this) ();
return layout_type::index_i (it_ - m.begin1 ().it_, m.size1 (), m.size2 ());
}
BOOST_UBLAS_INLINE
size_type index2 () const {
self_type &m = (*this) ();
return layout_type::index_j (it_ - m.begin1 ().it_, m.size1 (), m.size2 ());
}
// Assignment
BOOST_UBLAS_INLINE
iterator1 &operator = (const iterator1 &it) {
container_reference<self_type>::assign (&it ());
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it_ == it.it_;
}
BOOST_UBLAS_INLINE
bool operator < (const iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it_ < it.it_;
}
private:
subiterator_type it_;
friend class const_iterator1;
};
#endif
BOOST_UBLAS_INLINE
iterator1 begin1 () {
return find1 (0, 0, 0);
}
BOOST_UBLAS_INLINE
iterator1 end1 () {
return find1 (0, size1_, 0);
}
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class const_iterator2:
public container_const_reference<matrix>,
public random_access_iterator_base<dense_random_access_iterator_tag,
const_iterator2, value_type> {
public:
typedef typename matrix::value_type value_type;
typedef typename matrix::difference_type difference_type;
typedef typename matrix::const_reference reference;
typedef const typename matrix::pointer pointer;
typedef const_iterator1 dual_iterator_type;
typedef const_reverse_iterator1 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator2 ():
container_const_reference<self_type> (), it_ () {}
BOOST_UBLAS_INLINE
const_iterator2 (const self_type &m, const const_subiterator_type &it):
container_const_reference<self_type> (m), it_ (it) {}
BOOST_UBLAS_INLINE
const_iterator2 (const iterator2 &it):
container_const_reference<self_type> (it ()), it_ (it.it_) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator2 &operator ++ () {
layout_type::increment_j (it_, (*this) ().size1 (), (*this) ().size2 ());
return *this;
}
BOOST_UBLAS_INLINE
const_iterator2 &operator -- () {
layout_type::decrement_j (it_, (*this) ().size1 (), (*this) ().size2 ());
return *this;
}
BOOST_UBLAS_INLINE
const_iterator2 &operator += (difference_type n) {
layout_type::increment_j (it_, n, (*this) ().size1 (), (*this) ().size2 ());
return *this;
}
BOOST_UBLAS_INLINE
const_iterator2 &operator -= (difference_type n) {
layout_type::decrement_j (it_, n, (*this) ().size1 (), (*this) ().size2 ());
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const const_iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return layout_type::distance_j (it_ - it.it_, (*this) ().size1 (), (*this) ().size2 ());
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ());
BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ());
return *it_;
}
BOOST_UBLAS_INLINE
const_reference operator [] (difference_type n) const {
return *(*this + n);
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator1 begin () const {
const self_type &m = (*this) ();
return m.find1 (1, 0, index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator1 end () const {
const self_type &m = (*this) ();
return m.find1 (1, m.size1 (), index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator1 rbegin () const {
return const_reverse_iterator1 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator1 rend () const {
return const_reverse_iterator1 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
const self_type &m = (*this) ();
return layout_type::index_i (it_ - m.begin2 ().it_, m.size1 (), m.size2 ());
}
BOOST_UBLAS_INLINE
size_type index2 () const {
const self_type &m = (*this) ();
return layout_type::index_j (it_ - m.begin2 ().it_, m.size1 (), m.size2 ());
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator2 &operator = (const const_iterator2 &it) {
container_const_reference<self_type>::assign (&it ());
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it_ == it.it_;
}
BOOST_UBLAS_INLINE
bool operator < (const const_iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it_ < it.it_;
}
private:
const_subiterator_type it_;
friend class iterator2;
};
#endif
BOOST_UBLAS_INLINE
const_iterator2 begin2 () const {
return find2 (0, 0, 0);
}
BOOST_UBLAS_INLINE
const_iterator2 end2 () const {
return find2 (0, 0, size2_);
}
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class iterator2:
public container_reference<matrix>,
public random_access_iterator_base<dense_random_access_iterator_tag,
iterator2, value_type> {
public:
typedef typename matrix::value_type value_type;
typedef typename matrix::difference_type difference_type;
typedef typename matrix::reference reference;
typedef typename matrix::pointer pointer;
typedef iterator1 dual_iterator_type;
typedef reverse_iterator1 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
iterator2 ():
container_reference<self_type> (), it_ () {}
BOOST_UBLAS_INLINE
iterator2 (self_type &m, const subiterator_type &it):
container_reference<self_type> (m), it_ (it) {}
// Arithmetic
BOOST_UBLAS_INLINE
iterator2 &operator ++ () {
layout_type::increment_j (it_, (*this) ().size1 (), (*this) ().size2 ());
return *this;
}
BOOST_UBLAS_INLINE
iterator2 &operator -- () {
layout_type::decrement_j (it_, (*this) ().size1 (), (*this) ().size2 ());
return *this;
}
BOOST_UBLAS_INLINE
iterator2 &operator += (difference_type n) {
layout_type::increment_j (it_, n, (*this) ().size1 (), (*this) ().size2 ());
return *this;
}
BOOST_UBLAS_INLINE
iterator2 &operator -= (difference_type n) {
layout_type::decrement_j (it_, n, (*this) ().size1 (), (*this) ().size2 ());
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return layout_type::distance_j (it_ - it.it_, (*this) ().size1 (), (*this) ().size2 ());
}
// Dereference
BOOST_UBLAS_INLINE
reference operator * () const {
BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ());
BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ());
return *it_;
}
BOOST_UBLAS_INLINE
reference operator [] (difference_type n) const {
return *(*this + n);
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator1 begin () const {
self_type &m = (*this) ();
return m.find1 (1, 0, index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator1 end () const {
self_type &m = (*this) ();
return m.find1 (1, m.size1 (), index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator1 rbegin () const {
return reverse_iterator1 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator1 rend () const {
return reverse_iterator1 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
self_type &m = (*this) ();
return layout_type::index_i (it_ - m.begin2 ().it_, m.size1 (), m.size2 ());
}
BOOST_UBLAS_INLINE
size_type index2 () const {
self_type &m = (*this) ();
return layout_type::index_j (it_ - m.begin2 ().it_, m.size1 (), m.size2 ());
}
// Assignment
BOOST_UBLAS_INLINE
iterator2 &operator = (const iterator2 &it) {
container_reference<self_type>::assign (&it ());
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it_ == it.it_;
}
BOOST_UBLAS_INLINE
bool operator < (const iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it_ < it.it_;
}
private:
subiterator_type it_;
friend class const_iterator2;
};
#endif
BOOST_UBLAS_INLINE
iterator2 begin2 () {
return find2 (0, 0, 0);
}
BOOST_UBLAS_INLINE
iterator2 end2 () {
return find2 (0, 0, size2_);
}
// Reverse iterators
BOOST_UBLAS_INLINE
const_reverse_iterator1 rbegin1 () const {
return const_reverse_iterator1 (end1 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator1 rend1 () const {
return const_reverse_iterator1 (begin1 ());
}
BOOST_UBLAS_INLINE
reverse_iterator1 rbegin1 () {
return reverse_iterator1 (end1 ());
}
BOOST_UBLAS_INLINE
reverse_iterator1 rend1 () {
return reverse_iterator1 (begin1 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator2 rbegin2 () const {
return const_reverse_iterator2 (end2 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator2 rend2 () const {
return const_reverse_iterator2 (begin2 ());
}
BOOST_UBLAS_INLINE
reverse_iterator2 rbegin2 () {
return reverse_iterator2 (end2 ());
}
BOOST_UBLAS_INLINE
reverse_iterator2 rend2 () {
return reverse_iterator2 (begin2 ());
}
// Serialization
template<class Archive>
void serialize(Archive & ar, const unsigned int /* file_version */){
// we need to copy to a collection_size_type to get a portable
// and efficient serialization
serialization::collection_size_type s1 (size1_);
serialization::collection_size_type s2 (size2_);
// serialize the sizes
ar & serialization::make_nvp("size1",s1)
& serialization::make_nvp("size2",s2);
// copy the values back if loading
if (Archive::is_loading::value) {
size1_ = s1;
size2_ = s2;
}
ar & serialization::make_nvp("data",data_);
}
private:
size_type size1_;
size_type size2_;
array_type data_;
};
/** \brief A dense matrix of values of type \c T with a variable size bounded to a maximum of \f$M\f$ by \f$N\f$.
*
* For a \f$(m \times n)\f$-dimensional matrix and \f$ 0 \leq i < m, 0 \leq j < n\f$, every element \f$m_{i,j}\f$ is mapped
* to the \f$(i.n + j)\f$-th element of the container for row major orientation or the \f$(i + j.m)\f$-th element
* of the container for column major orientation. Finally in a dense matrix all elements are represented in memory
* in a contiguous chunk of memory.
*
* Orientation can be specified. Default is \c row_major
* The default constructor creates the matrix with size \f$M\f$ by \f$N\f$. Elements are constructed by the storage
* type \c bounded_array, which need not initialise their value.
*
* \tparam T the type of object stored in the matrix (like double, float, complex, etc...)
* \tparam M maximum and default number of rows (if not specified at construction)
* \tparam N maximum and default number of columns (if not specified at construction)
* \tparam L the storage organization. It can be either \c row_major or \c column_major. Default is \c row_major
*/
template<class T, std::size_t M, std::size_t N, class L>
class bounded_matrix:
public matrix<T, L, bounded_array<T, M * N> > {
typedef matrix<T, L, bounded_array<T, M * N> > matrix_type;
public:
typedef typename matrix_type::size_type size_type;
static const size_type max_size1 = M;
static const size_type max_size2 = N;
// Construction and destruction
BOOST_UBLAS_INLINE
bounded_matrix ():
matrix_type (M, N) {}
BOOST_UBLAS_INLINE
bounded_matrix (size_type size1, size_type size2):
matrix_type (size1, size2) {}
BOOST_UBLAS_INLINE
bounded_matrix (const bounded_matrix &m):
matrix_type (m) {}
template<class A2> // Allow matrix<T, L, bounded_array<M,N> > construction
BOOST_UBLAS_INLINE
bounded_matrix (const matrix<T, L, A2> &m):
matrix_type (m) {}
template<class AE>
BOOST_UBLAS_INLINE
bounded_matrix (const matrix_expression<AE> &ae):
matrix_type (ae) {}
BOOST_UBLAS_INLINE
~bounded_matrix () {}
// Assignment
#ifdef BOOST_UBLAS_MOVE_SEMANTICS
/*! @note "pass by value" the key idea to enable move semantics */
BOOST_UBLAS_INLINE
bounded_matrix &operator = (bounded_matrix m) {
matrix_type::operator = (m);
return *this;
}
#else
BOOST_UBLAS_INLINE
bounded_matrix &operator = (const bounded_matrix &m) {
matrix_type::operator = (m);
return *this;
}
#endif
template<class L2, class A2> // Generic matrix assignment
BOOST_UBLAS_INLINE
bounded_matrix &operator = (const matrix<T, L2, A2> &m) {
matrix_type::operator = (m);
return *this;
}
template<class C> // Container assignment without temporary
BOOST_UBLAS_INLINE
bounded_matrix &operator = (const matrix_container<C> &m) {
matrix_type::operator = (m);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
bounded_matrix &operator = (const matrix_expression<AE> &ae) {
matrix_type::operator = (ae);
return *this;
}
};
/** \brief A dense matrix of values of type \c T stored as a vector of vectors.
*
* Rows or columns are not stored into contiguous chunks of memory but data inside rows (or columns) are.
* Orientation and storage can also be specified, otherwise a row major and unbounded arrays are used.
* The data is stored as a vector of vectors, meaning that rows or columns might not be stored into contiguous chunks
* of memory. Orientation and storage can also be specified, otherwise a row major and unbounded arrays are used.
* The storage type defaults to \c unbounded_array<unbounded_array<T>> and orientation is \c row_major. It is \b not
* required by the storage to initialize elements of the matrix. For a \f$(m \times n)\f$-dimensional matrix and
* \f$ 0 \leq i < m, 0 \leq j < n\f$, every element \f$m_{i,j}\f$ is mapped to the \f$(i.n + j)\f$-th element of the
* container for row major orientation or the \f$(i + j.m)\f$-th element of the container for column major orientation.
*
* \tparam T the type of object stored in the matrix (like double, float, complex, etc...)
* \tparam L the storage organization. It can be either \c row_major or \c column_major. By default it is \c row_major
* \tparam A the type of Storage array. By default, it is an \unbounded_array<unbounder_array<T>>
*/
template<class T, class L, class A>
class vector_of_vector:
public matrix_container<vector_of_vector<T, L, A> > {
typedef T *pointer;
typedef L layout_type;
typedef vector_of_vector<T, L, A> self_type;
public:
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
using matrix_container<self_type>::operator ();
#endif
typedef typename A::size_type size_type;
typedef typename A::difference_type difference_type;
typedef T value_type;
typedef const T &const_reference;
typedef T &reference;
typedef A array_type;
typedef const matrix_reference<const self_type> const_closure_type;
typedef matrix_reference<self_type> closure_type;
typedef vector<T, typename A::value_type> vector_temporary_type;
typedef self_type matrix_temporary_type;
typedef dense_tag storage_category;
// This could be better for performance,
// typedef typename unknown_orientation_tag orientation_category;
// but others depend on the orientation information...
typedef typename L::orientation_category orientation_category;
// Construction and destruction
BOOST_UBLAS_INLINE
vector_of_vector ():
matrix_container<self_type> (),
size1_ (0), size2_ (0), data_ (1) {}
BOOST_UBLAS_INLINE
vector_of_vector (size_type size1, size_type size2):
matrix_container<self_type> (),
size1_ (size1), size2_ (size2), data_ (1) {
resize (size1, size2, true);
}
BOOST_UBLAS_INLINE
vector_of_vector (const vector_of_vector &m):
matrix_container<self_type> (),
size1_ (m.size1_), size2_ (m.size2_), data_ (m.data_) {}
template<class AE>
BOOST_UBLAS_INLINE
vector_of_vector (const matrix_expression<AE> &ae):
matrix_container<self_type> (),
size1_ (ae ().size1 ()), size2_ (ae ().size2 ()), data_ (layout_type::size_M (size1_, size2_) + 1) {
for (size_type k = 0; k < layout_type::size_M (size1_, size2_); ++ k)
data ()[k].resize (layout_type::size_m (size1_, size2_));
matrix_assign<scalar_assign> (*this, ae);
}
// Accessors
BOOST_UBLAS_INLINE
size_type size1 () const {
return size1_;
}
BOOST_UBLAS_INLINE
size_type size2 () const {
return size2_;
}
// Storage accessors
BOOST_UBLAS_INLINE
const array_type &data () const {
return data_;
}
BOOST_UBLAS_INLINE
array_type &data () {
return data_;
}
// Resizing
BOOST_UBLAS_INLINE
void resize (size_type size1, size_type size2, bool preserve = true) {
size1_ = size1;
size2_ = size2;
if (preserve)
data ().resize (layout_type::size_M (size1, size2) + 1, typename array_type::value_type ());
else
data ().resize (layout_type::size_M (size1, size2) + 1);
for (size_type k = 0; k < layout_type::size_M (size1, size2); ++ k) {
if (preserve)
data () [k].resize (layout_type::size_m (size1, size2), value_type ());
else
data () [k].resize (layout_type::size_m (size1, size2));
}
}
// Element access
BOOST_UBLAS_INLINE
const_reference operator () (size_type i, size_type j) const {
return data () [layout_type::index_M (i, j)] [layout_type::index_m (i, j)];
}
BOOST_UBLAS_INLINE
reference at_element (size_type i, size_type j) {
return data () [layout_type::index_M (i, j)] [layout_type::index_m (i, j)];
}
BOOST_UBLAS_INLINE
reference operator () (size_type i, size_type j) {
return at_element (i, j);
}
// Element assignment
BOOST_UBLAS_INLINE
reference insert_element (size_type i, size_type j, const_reference t) {
return (at_element (i, j) = t);
}
BOOST_UBLAS_INLINE
void erase_element (size_type i, size_type j) {
at_element (i, j) = value_type/*zero*/();
}
// Zeroing
BOOST_UBLAS_INLINE
void clear () {
for (size_type k = 0; k < layout_type::size_M (size1_, size2_); ++ k)
std::fill (data () [k].begin (), data () [k].end (), value_type/*zero*/());
}
// Assignment
BOOST_UBLAS_INLINE
vector_of_vector &operator = (const vector_of_vector &m) {
size1_ = m.size1_;
size2_ = m.size2_;
data () = m.data ();
return *this;
}
BOOST_UBLAS_INLINE
vector_of_vector &assign_temporary (vector_of_vector &m) {
swap (m);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
vector_of_vector &operator = (const matrix_expression<AE> &ae) {
self_type temporary (ae);
return assign_temporary (temporary);
}
template<class C> // Container assignment without temporary
BOOST_UBLAS_INLINE
vector_of_vector &operator = (const matrix_container<C> &m) {
resize (m ().size1 (), m ().size2 (), false);
assign (m);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
vector_of_vector &assign (const matrix_expression<AE> &ae) {
matrix_assign<scalar_assign> (*this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
vector_of_vector& operator += (const matrix_expression<AE> &ae) {
self_type temporary (*this + ae);
return assign_temporary (temporary);
}
template<class C> // Container assignment without temporary
BOOST_UBLAS_INLINE
vector_of_vector &operator += (const matrix_container<C> &m) {
plus_assign (m);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
vector_of_vector &plus_assign (const matrix_expression<AE> &ae) {
matrix_assign<scalar_plus_assign> (*this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
vector_of_vector& operator -= (const matrix_expression<AE> &ae) {
self_type temporary (*this - ae);
return assign_temporary (temporary);
}
template<class C> // Container assignment without temporary
BOOST_UBLAS_INLINE
vector_of_vector &operator -= (const matrix_container<C> &m) {
minus_assign (m);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
vector_of_vector &minus_assign (const matrix_expression<AE> &ae) {
matrix_assign<scalar_minus_assign> (*this, ae);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
vector_of_vector& operator *= (const AT &at) {
matrix_assign_scalar<scalar_multiplies_assign> (*this, at);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
vector_of_vector& operator /= (const AT &at) {
matrix_assign_scalar<scalar_divides_assign> (*this, at);
return *this;
}
// Swapping
BOOST_UBLAS_INLINE
void swap (vector_of_vector &m) {
if (this != &m) {
std::swap (size1_, m.size1_);
std::swap (size2_, m.size2_);
data ().swap (m.data ());
}
}
BOOST_UBLAS_INLINE
friend void swap (vector_of_vector &m1, vector_of_vector &m2) {
m1.swap (m2);
}
// Iterator types
private:
// Use the vector iterator
typedef typename A::value_type::const_iterator const_subiterator_type;
typedef typename A::value_type::iterator subiterator_type;
public:
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
typedef indexed_iterator1<self_type, dense_random_access_iterator_tag> iterator1;
typedef indexed_iterator2<self_type, dense_random_access_iterator_tag> iterator2;
typedef indexed_const_iterator1<self_type, dense_random_access_iterator_tag> const_iterator1;
typedef indexed_const_iterator2<self_type, dense_random_access_iterator_tag> const_iterator2;
#else
class const_iterator1;
class iterator1;
class const_iterator2;
class iterator2;
#endif
typedef reverse_iterator_base1<const_iterator1> const_reverse_iterator1;
typedef reverse_iterator_base1<iterator1> reverse_iterator1;
typedef reverse_iterator_base2<const_iterator2> const_reverse_iterator2;
typedef reverse_iterator_base2<iterator2> reverse_iterator2;
// Element lookup
BOOST_UBLAS_INLINE
const_iterator1 find1 (int /*rank*/, size_type i, size_type j) const {
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
return const_iterator1 (*this, i, j);
#else
return const_iterator1 (*this, i, j, data () [layout_type::index_M (i, j)].begin () + layout_type::index_m (i, j));
#endif
}
BOOST_UBLAS_INLINE
iterator1 find1 (int /*rank*/, size_type i, size_type j) {
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
return iterator1 (*this, i, j);
#else
return iterator1 (*this, i, j, data () [layout_type::index_M (i, j)].begin () + layout_type::index_m (i, j));
#endif
}
BOOST_UBLAS_INLINE
const_iterator2 find2 (int /*rank*/, size_type i, size_type j) const {
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
return const_iterator2 (*this, i, j);
#else
return const_iterator2 (*this, i, j, data () [layout_type::index_M (i, j)].begin () + layout_type::index_m (i, j));
#endif
}
BOOST_UBLAS_INLINE
iterator2 find2 (int /*rank*/, size_type i, size_type j) {
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
return iterator2 (*this, i, j);
#else
return iterator2 (*this, i, j, data () [layout_type::index_M (i, j)].begin () + layout_type::index_m (i, j));
#endif
}
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class const_iterator1:
public container_const_reference<vector_of_vector>,
public random_access_iterator_base<dense_random_access_iterator_tag,
const_iterator1, value_type> {
public:
typedef typename vector_of_vector::value_type value_type;
typedef typename vector_of_vector::difference_type difference_type;
typedef typename vector_of_vector::const_reference reference;
typedef const typename vector_of_vector::pointer pointer;
typedef const_iterator2 dual_iterator_type;
typedef const_reverse_iterator2 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator1 ():
container_const_reference<self_type> (), i_ (), j_ (), it_ () {}
BOOST_UBLAS_INLINE
const_iterator1 (const self_type &m, size_type i, size_type j, const const_subiterator_type &it):
container_const_reference<self_type> (m), i_ (i), j_ (j), it_ (it) {}
BOOST_UBLAS_INLINE
const_iterator1 (const iterator1 &it):
container_const_reference<self_type> (it ()), i_ (it.i_), j_ (it.j_), it_ (it.it_) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator1 &operator ++ () {
++ i_;
const self_type &m = (*this) ();
if (layout_type::fast_i ())
++ it_;
else
it_ = m.find1 (1, i_, j_).it_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator1 &operator -- () {
-- i_;
const self_type &m = (*this) ();
if (layout_type::fast_i ())
-- it_;
else
it_ = m.find1 (1, i_, j_).it_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator1 &operator += (difference_type n) {
i_ += n;
const self_type &m = (*this) ();
it_ = m.find1 (1, i_, j_).it_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator1 &operator -= (difference_type n) {
i_ -= n;
const self_type &m = (*this) ();
it_ = m.find1 (1, i_, j_).it_;
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const const_iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (index2 () == it.index2 (), bad_index ());
return index1 () - it.index1 ();
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ());
BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ());
return *it_;
}
BOOST_UBLAS_INLINE
const_reference operator [] (difference_type n) const {
return *(*this + n);
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator2 begin () const {
const self_type &m = (*this) ();
return m.find2 (1, index1 (), 0);
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator2 end () const {
const self_type &m = (*this) ();
return m.find2 (1, index1 (), m.size2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator2 rbegin () const {
return const_reverse_iterator2 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator2 rend () const {
return const_reverse_iterator2 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
return i_;
}
BOOST_UBLAS_INLINE
size_type index2 () const {
return j_;
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator1 &operator = (const const_iterator1 &it) {
container_const_reference<self_type>::assign (&it ());
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (index2 () == it.index2 (), bad_index ());
return it_ == it.it_;
}
BOOST_UBLAS_INLINE
bool operator < (const const_iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (index2 () == it.index2 (), bad_index ());
return it_ < it.it_;
}
private:
size_type i_;
size_type j_;
const_subiterator_type it_;
friend class iterator1;
};
#endif
BOOST_UBLAS_INLINE
const_iterator1 begin1 () const {
return find1 (0, 0, 0);
}
BOOST_UBLAS_INLINE
const_iterator1 end1 () const {
return find1 (0, size1_, 0);
}
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class iterator1:
public container_reference<vector_of_vector>,
public random_access_iterator_base<dense_random_access_iterator_tag,
iterator1, value_type> {
public:
typedef typename vector_of_vector::value_type value_type;
typedef typename vector_of_vector::difference_type difference_type;
typedef typename vector_of_vector::reference reference;
typedef typename vector_of_vector::pointer pointer;
typedef iterator2 dual_iterator_type;
typedef reverse_iterator2 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
iterator1 ():
container_reference<self_type> (), i_ (), j_ (), it_ () {}
BOOST_UBLAS_INLINE
iterator1 (self_type &m, size_type i, size_type j, const subiterator_type &it):
container_reference<self_type> (m), i_ (i), j_ (j), it_ (it) {}
// Arithmetic
BOOST_UBLAS_INLINE
iterator1 &operator ++ () {
++ i_;
self_type &m = (*this) ();
if (layout_type::fast_i ())
++ it_;
else
it_ = m.find1 (1, i_, j_).it_;
return *this;
}
BOOST_UBLAS_INLINE
iterator1 &operator -- () {
-- i_;
self_type &m = (*this) ();
if (layout_type::fast_i ())
-- it_;
else
it_ = m.find1 (1, i_, j_).it_;
return *this;
}
BOOST_UBLAS_INLINE
iterator1 &operator += (difference_type n) {
i_ += n;
self_type &m = (*this) ();
it_ = m.find1 (1, i_, j_).it_;
return *this;
}
BOOST_UBLAS_INLINE
iterator1 &operator -= (difference_type n) {
i_ -= n;
self_type &m = (*this) ();
it_ = m.find1 (1, i_, j_).it_;
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (index2 () == it.index2 (), bad_index ());
return index1 () - it.index1 ();
}
// Dereference
BOOST_UBLAS_INLINE
reference operator * () const {
BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ());
BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ());
return *it_;
}
BOOST_UBLAS_INLINE
reference operator [] (difference_type n) const {
return *(*this + n);
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator2 begin () const {
self_type &m = (*this) ();
return m.find2 (1, index1 (), 0);
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator2 end () const {
self_type &m = (*this) ();
return m.find2 (1, index1 (), m.size2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator2 rbegin () const {
return reverse_iterator2 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator2 rend () const {
return reverse_iterator2 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
return i_;
}
BOOST_UBLAS_INLINE
size_type index2 () const {
return j_;
}
// Assignment
BOOST_UBLAS_INLINE
iterator1 &operator = (const iterator1 &it) {
container_reference<self_type>::assign (&it ());
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (index2 () == it.index2 (), bad_index ());
return it_ == it.it_;
}
BOOST_UBLAS_INLINE
bool operator < (const iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (index2 () == it.index2 (), bad_index ());
return it_ < it.it_;
}
private:
size_type i_;
size_type j_;
subiterator_type it_;
friend class const_iterator1;
};
#endif
BOOST_UBLAS_INLINE
iterator1 begin1 () {
return find1 (0, 0, 0);
}
BOOST_UBLAS_INLINE
iterator1 end1 () {
return find1 (0, size1_, 0);
}
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class const_iterator2:
public container_const_reference<vector_of_vector>,
public random_access_iterator_base<dense_random_access_iterator_tag,
const_iterator2, value_type> {
public:
typedef typename vector_of_vector::value_type value_type;
typedef typename vector_of_vector::difference_type difference_type;
typedef typename vector_of_vector::const_reference reference;
typedef const typename vector_of_vector::pointer pointer;
typedef const_iterator1 dual_iterator_type;
typedef const_reverse_iterator1 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator2 ():
container_const_reference<self_type> (), i_ (), j_ (), it_ () {}
BOOST_UBLAS_INLINE
const_iterator2 (const self_type &m, size_type i, size_type j, const const_subiterator_type &it):
container_const_reference<self_type> (m), i_ (i), j_ (j), it_ (it) {}
BOOST_UBLAS_INLINE
const_iterator2 (const iterator2 &it):
container_const_reference<self_type> (it ()), i_ (it.i_), j_ (it.j_), it_ (it.it_) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator2 &operator ++ () {
++ j_;
const self_type &m = (*this) ();
if (layout_type::fast_j ())
++ it_;
else
it_ = m.find2 (1, i_, j_).it_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator2 &operator -- () {
-- j_;
const self_type &m = (*this) ();
if (layout_type::fast_j ())
-- it_;
else
it_ = m.find2 (1, i_, j_).it_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator2 &operator += (difference_type n) {
j_ += n;
const self_type &m = (*this) ();
it_ = m.find2 (1, i_, j_).it_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator2 &operator -= (difference_type n) {
j_ -= n;
const self_type &m = (*this) ();
it_ = m.find2 (1, i_, j_).it_;
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const const_iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (index1 () == it.index1 (), bad_index ());
return index2 () - it.index2 ();
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ());
BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ());
return *it_;
}
BOOST_UBLAS_INLINE
const_reference operator [] (difference_type n) const {
return *(*this + n);
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator1 begin () const {
const self_type &m = (*this) ();
return m.find1 (1, 0, index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator1 end () const {
const self_type &m = (*this) ();
return m.find1 (1, m.size1 (), index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator1 rbegin () const {
return const_reverse_iterator1 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator1 rend () const {
return const_reverse_iterator1 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
return i_;
}
BOOST_UBLAS_INLINE
size_type index2 () const {
return j_;
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator2 &operator = (const const_iterator2 &it) {
container_const_reference<self_type>::assign (&it ());
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (index1 () == it.index1 (), bad_index ());
return it_ == it.it_;
}
BOOST_UBLAS_INLINE
bool operator < (const const_iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (index1 () == it.index1 (), bad_index ());
return it_ < it.it_;
}
private:
size_type i_;
size_type j_;
const_subiterator_type it_;
friend class iterator2;
};
#endif
BOOST_UBLAS_INLINE
const_iterator2 begin2 () const {
return find2 (0, 0, 0);
}
BOOST_UBLAS_INLINE
const_iterator2 end2 () const {
return find2 (0, 0, size2_);
}
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class iterator2:
public container_reference<vector_of_vector>,
public random_access_iterator_base<dense_random_access_iterator_tag,
iterator2, value_type> {
public:
typedef typename vector_of_vector::value_type value_type;
typedef typename vector_of_vector::difference_type difference_type;
typedef typename vector_of_vector::reference reference;
typedef typename vector_of_vector::pointer pointer;
typedef iterator1 dual_iterator_type;
typedef reverse_iterator1 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
iterator2 ():
container_reference<self_type> (), i_ (), j_ (), it_ () {}
BOOST_UBLAS_INLINE
iterator2 (self_type &m, size_type i, size_type j, const subiterator_type &it):
container_reference<self_type> (m), i_ (i), j_ (j), it_ (it) {}
// Arithmetic
BOOST_UBLAS_INLINE
iterator2 &operator ++ () {
++ j_;
self_type &m = (*this) ();
if (layout_type::fast_j ())
++ it_;
else
it_ = m.find2 (1, i_, j_).it_;
return *this;
}
BOOST_UBLAS_INLINE
iterator2 &operator -- () {
-- j_;
self_type &m = (*this) ();
if (layout_type::fast_j ())
-- it_;
else
it_ = m.find2 (1, i_, j_).it_;
return *this;
}
BOOST_UBLAS_INLINE
iterator2 &operator += (difference_type n) {
j_ += n;
self_type &m = (*this) ();
it_ = m.find2 (1, i_, j_).it_;
return *this;
}
BOOST_UBLAS_INLINE
iterator2 &operator -= (difference_type n) {
j_ -= n;
self_type &m = (*this) ();
it_ = m.find2 (1, i_, j_).it_;
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (index1 () == it.index1 (), bad_index ());
return index2 () - it.index2 ();
}
// Dereference
BOOST_UBLAS_INLINE
reference operator * () const {
BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ());
BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ());
return *it_;
}
BOOST_UBLAS_INLINE
reference operator [] (difference_type n) const {
return *(*this + n);
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator1 begin () const {
self_type &m = (*this) ();
return m.find1 (1, 0, index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator1 end () const {
self_type &m = (*this) ();
return m.find1 (1, m.size1 (), index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator1 rbegin () const {
return reverse_iterator1 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator1 rend () const {
return reverse_iterator1 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
return i_;
}
BOOST_UBLAS_INLINE
size_type index2 () const {
return j_;
}
// Assignment
BOOST_UBLAS_INLINE
iterator2 &operator = (const iterator2 &it) {
container_reference<self_type>::assign (&it ());
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (index1 () == it.index1 (), bad_index ());
return it_ == it.it_;
}
BOOST_UBLAS_INLINE
bool operator < (const iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (index1 () == it.index1 (), bad_index ());
return it_ < it.it_;
}
private:
size_type i_;
size_type j_;
subiterator_type it_;
friend class const_iterator2;
};
#endif
BOOST_UBLAS_INLINE
iterator2 begin2 () {
return find2 (0, 0, 0);
}
BOOST_UBLAS_INLINE
iterator2 end2 () {
return find2 (0, 0, size2_);
}
// Reverse iterators
BOOST_UBLAS_INLINE
const_reverse_iterator1 rbegin1 () const {
return const_reverse_iterator1 (end1 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator1 rend1 () const {
return const_reverse_iterator1 (begin1 ());
}
BOOST_UBLAS_INLINE
reverse_iterator1 rbegin1 () {
return reverse_iterator1 (end1 ());
}
BOOST_UBLAS_INLINE
reverse_iterator1 rend1 () {
return reverse_iterator1 (begin1 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator2 rbegin2 () const {
return const_reverse_iterator2 (end2 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator2 rend2 () const {
return const_reverse_iterator2 (begin2 ());
}
BOOST_UBLAS_INLINE
reverse_iterator2 rbegin2 () {
return reverse_iterator2 (end2 ());
}
BOOST_UBLAS_INLINE
reverse_iterator2 rend2 () {
return reverse_iterator2 (begin2 ());
}
// Serialization
template<class Archive>
void serialize(Archive & ar, const unsigned int /* file_version */){
// we need to copy to a collection_size_type to get a portable
// and efficient serialization
serialization::collection_size_type s1 (size1_);
serialization::collection_size_type s2 (size2_);
// serialize the sizes
ar & serialization::make_nvp("size1",s1)
& serialization::make_nvp("size2",s2);
// copy the values back if loading
if (Archive::is_loading::value) {
size1_ = s1;
size2_ = s2;
}
ar & serialization::make_nvp("data",data_);
}
private:
size_type size1_;
size_type size2_;
array_type data_;
};
/** \brief A matrix with all values of type \c T equal to zero
*
* Changing values does not affect the matrix, however assigning it to a normal matrix will put zero
* everywhere in the target matrix. All accesses are constant time, due to the trivial value.
*
* \tparam T the type of object stored in the matrix (like double, float, complex, etc...)
* \tparam ALLOC an allocator for storing the zero element. By default, a standar allocator is used.
*/
template<class T, class ALLOC>
class zero_matrix:
public matrix_container<zero_matrix<T, ALLOC> > {
typedef const T *const_pointer;
typedef zero_matrix<T, ALLOC> self_type;
public:
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
using matrix_container<self_type>::operator ();
#endif
typedef typename ALLOC::size_type size_type;
typedef typename ALLOC::difference_type difference_type;
typedef T value_type;
typedef const T &const_reference;
typedef T &reference;
typedef const matrix_reference<const self_type> const_closure_type;
typedef matrix_reference<self_type> closure_type;
typedef sparse_tag storage_category;
typedef unknown_orientation_tag orientation_category;
// Construction and destruction
BOOST_UBLAS_INLINE
zero_matrix ():
matrix_container<self_type> (),
size1_ (0), size2_ (0) {}
BOOST_UBLAS_INLINE
zero_matrix (size_type size):
matrix_container<self_type> (),
size1_ (size), size2_ (size) {}
BOOST_UBLAS_INLINE
zero_matrix (size_type size1, size_type size2):
matrix_container<self_type> (),
size1_ (size1), size2_ (size2) {}
BOOST_UBLAS_INLINE
zero_matrix (const zero_matrix &m):
matrix_container<self_type> (),
size1_ (m.size1_), size2_ (m.size2_) {}
// Accessors
BOOST_UBLAS_INLINE
size_type size1 () const {
return size1_;
}
BOOST_UBLAS_INLINE
size_type size2 () const {
return size2_;
}
// Resizing
BOOST_UBLAS_INLINE
void resize (size_type size, bool preserve = true) {
size1_ = size;
size2_ = size;
}
BOOST_UBLAS_INLINE
void resize (size_type size1, size_type size2, bool /*preserve*/ = true) {
size1_ = size1;
size2_ = size2;
}
// Element access
BOOST_UBLAS_INLINE
const_reference operator () (size_type /* i */, size_type /* j */) const {
return zero_;
}
// Assignment
BOOST_UBLAS_INLINE
zero_matrix &operator = (const zero_matrix &m) {
size1_ = m.size1_;
size2_ = m.size2_;
return *this;
}
BOOST_UBLAS_INLINE
zero_matrix &assign_temporary (zero_matrix &m) {
swap (m);
return *this;
}
// Swapping
BOOST_UBLAS_INLINE
void swap (zero_matrix &m) {
if (this != &m) {
std::swap (size1_, m.size1_);
std::swap (size2_, m.size2_);
}
}
BOOST_UBLAS_INLINE
friend void swap (zero_matrix &m1, zero_matrix &m2) {
m1.swap (m2);
}
// Iterator types
public:
class const_iterator1;
class const_iterator2;
typedef reverse_iterator_base1<const_iterator1> const_reverse_iterator1;
typedef reverse_iterator_base2<const_iterator2> const_reverse_iterator2;
// Element lookup
BOOST_UBLAS_INLINE
const_iterator1 find1 (int /*rank*/, size_type /*i*/, size_type /*j*/) const {
return const_iterator1 (*this);
}
BOOST_UBLAS_INLINE
const_iterator2 find2 (int /*rank*/, size_type /*i*/, size_type /*j*/) const {
return const_iterator2 (*this);
}
class const_iterator1:
public container_const_reference<zero_matrix>,
public bidirectional_iterator_base<sparse_bidirectional_iterator_tag,
const_iterator1, value_type> {
public:
typedef typename zero_matrix::value_type value_type;
typedef typename zero_matrix::difference_type difference_type;
typedef typename zero_matrix::const_reference reference;
typedef typename zero_matrix::const_pointer pointer;
typedef const_iterator2 dual_iterator_type;
typedef const_reverse_iterator2 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator1 ():
container_const_reference<self_type> () {}
BOOST_UBLAS_INLINE
const_iterator1 (const self_type &m):
container_const_reference<self_type> (m) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator1 &operator ++ () {
BOOST_UBLAS_CHECK_FALSE (bad_index ());
return *this;
}
BOOST_UBLAS_INLINE
const_iterator1 &operator -- () {
BOOST_UBLAS_CHECK_FALSE (bad_index ());
return *this;
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
BOOST_UBLAS_CHECK_FALSE (bad_index ());
return zero_; // arbitary return value
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator2 begin () const {
return const_iterator2 ((*this) ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator2 end () const {
return const_iterator2 ((*this) ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator2 rbegin () const {
return const_reverse_iterator2 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator2 rend () const {
return const_reverse_iterator2 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
BOOST_UBLAS_CHECK_FALSE (bad_index ());
return 0; // arbitary return value
}
BOOST_UBLAS_INLINE
size_type index2 () const {
BOOST_UBLAS_CHECK_FALSE (bad_index ());
return 0; // arbitary return value
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator1 &operator = (const const_iterator1 &it) {
container_const_reference<self_type>::assign (&it ());
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
detail::ignore_unused_variable_warning(it);
return true;
}
};
typedef const_iterator1 iterator1;
BOOST_UBLAS_INLINE
const_iterator1 begin1 () const {
return const_iterator1 (*this);
}
BOOST_UBLAS_INLINE
const_iterator1 end1 () const {
return const_iterator1 (*this);
}
class const_iterator2:
public container_const_reference<zero_matrix>,
public bidirectional_iterator_base<sparse_bidirectional_iterator_tag,
const_iterator2, value_type> {
public:
typedef typename zero_matrix::value_type value_type;
typedef typename zero_matrix::difference_type difference_type;
typedef typename zero_matrix::const_reference reference;
typedef typename zero_matrix::const_pointer pointer;
typedef const_iterator1 dual_iterator_type;
typedef const_reverse_iterator1 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator2 ():
container_const_reference<self_type> () {}
BOOST_UBLAS_INLINE
const_iterator2 (const self_type &m):
container_const_reference<self_type> (m) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator2 &operator ++ () {
BOOST_UBLAS_CHECK_FALSE (bad_index ());
return *this;
}
BOOST_UBLAS_INLINE
const_iterator2 &operator -- () {
BOOST_UBLAS_CHECK_FALSE (bad_index ());
return *this;
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
BOOST_UBLAS_CHECK_FALSE (bad_index ());
return zero_; // arbitary return value
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator1 begin () const {
return const_iterator1 ((*this) ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator1 end () const {
return const_iterator1 ((*this) ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator1 rbegin () const {
return const_reverse_iterator1 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator1 rend () const {
return const_reverse_iterator1 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
BOOST_UBLAS_CHECK_FALSE (bad_index ());
return 0; // arbitary return value
}
BOOST_UBLAS_INLINE
size_type index2 () const {
BOOST_UBLAS_CHECK_FALSE (bad_index ());
return 0; // arbitary return value
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator2 &operator = (const const_iterator2 &it) {
container_const_reference<self_type>::assign (&it ());
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
detail::ignore_unused_variable_warning(it);
return true;
}
};
typedef const_iterator2 iterator2;
BOOST_UBLAS_INLINE
const_iterator2 begin2 () const {
return find2 (0, 0, 0);
}
BOOST_UBLAS_INLINE
const_iterator2 end2 () const {
return find2 (0, 0, size2_);
}
// Reverse iterators
BOOST_UBLAS_INLINE
const_reverse_iterator1 rbegin1 () const {
return const_reverse_iterator1 (end1 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator1 rend1 () const {
return const_reverse_iterator1 (begin1 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator2 rbegin2 () const {
return const_reverse_iterator2 (end2 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator2 rend2 () const {
return const_reverse_iterator2 (begin2 ());
}
// Serialization
template<class Archive>
void serialize(Archive & ar, const unsigned int /* file_version */){
// we need to copy to a collection_size_type to get a portable
// and efficient serialization
serialization::collection_size_type s1 (size1_);
serialization::collection_size_type s2 (size2_);
// serialize the sizes
ar & serialization::make_nvp("size1",s1)
& serialization::make_nvp("size2",s2);
// copy the values back if loading
if (Archive::is_loading::value) {
size1_ = s1;
size2_ = s2;
}
}
private:
size_type size1_;
size_type size2_;
static const value_type zero_;
};
template<class T, class ALLOC>
const typename zero_matrix<T, ALLOC>::value_type zero_matrix<T, ALLOC>::zero_ = T(/*zero*/);
/** \brief An identity matrix with values of type \c T
*
* Elements or cordinates \f$(i,i)\f$ are equal to 1 (one) and all others to 0 (zero).
* Changing values does not affect the matrix, however assigning it to a normal matrix will
* make the matrix equal to an identity matrix. All accesses are constant du to the trivial values.
*
* \tparam T the type of object stored in the matrix (like double, float, complex, etc...)
* \tparam ALLOC an allocator for storing the zeros and one elements. By default, a standar allocator is used.
*/
template<class T, class ALLOC>
class identity_matrix:
public matrix_container<identity_matrix<T, ALLOC> > {
typedef const T *const_pointer;
typedef identity_matrix<T, ALLOC> self_type;
public:
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
using matrix_container<self_type>::operator ();
#endif
typedef typename ALLOC::size_type size_type;
typedef typename ALLOC::difference_type difference_type;
typedef T value_type;
typedef const T &const_reference;
typedef T &reference;
typedef const matrix_reference<const self_type> const_closure_type;
typedef matrix_reference<self_type> closure_type;
typedef sparse_tag storage_category;
typedef unknown_orientation_tag orientation_category;
// Construction and destruction
BOOST_UBLAS_INLINE
identity_matrix ():
matrix_container<self_type> (),
size1_ (0), size2_ (0), size_common_ (0) {}
BOOST_UBLAS_INLINE
identity_matrix (size_type size):
matrix_container<self_type> (),
size1_ (size), size2_ (size), size_common_ ((std::min) (size1_, size2_)) {}
BOOST_UBLAS_INLINE
identity_matrix (size_type size1, size_type size2):
matrix_container<self_type> (),
size1_ (size1), size2_ (size2), size_common_ ((std::min) (size1_, size2_)) {}
BOOST_UBLAS_INLINE
identity_matrix (const identity_matrix &m):
matrix_container<self_type> (),
size1_ (m.size1_), size2_ (m.size2_), size_common_ ((std::min) (size1_, size2_)) {}
// Accessors
BOOST_UBLAS_INLINE
size_type size1 () const {
return size1_;
}
BOOST_UBLAS_INLINE
size_type size2 () const {
return size2_;
}
// Resizing
BOOST_UBLAS_INLINE
void resize (size_type size, bool preserve = true) {
size1_ = size;
size2_ = size;
size_common_ = ((std::min)(size1_, size2_));
}
BOOST_UBLAS_INLINE
void resize (size_type size1, size_type size2, bool /*preserve*/ = true) {
size1_ = size1;
size2_ = size2;
size_common_ = ((std::min)(size1_, size2_));
}
// Element access
BOOST_UBLAS_INLINE
const_reference operator () (size_type i, size_type j) const {
if (i == j)
return one_;
else
return zero_;
}
// Assignment
BOOST_UBLAS_INLINE
identity_matrix &operator = (const identity_matrix &m) {
size1_ = m.size1_;
size2_ = m.size2_;
size_common_ = m.size_common_;
return *this;
}
BOOST_UBLAS_INLINE
identity_matrix &assign_temporary (identity_matrix &m) {
swap (m);
return *this;
}
// Swapping
BOOST_UBLAS_INLINE
void swap (identity_matrix &m) {
if (this != &m) {
std::swap (size1_, m.size1_);
std::swap (size2_, m.size2_);
std::swap (size_common_, m.size_common_);
}
}
BOOST_UBLAS_INLINE
friend void swap (identity_matrix &m1, identity_matrix &m2) {
m1.swap (m2);
}
// Iterator types
private:
// Use an index
typedef size_type const_subiterator_type;
public:
class const_iterator1;
class const_iterator2;
typedef reverse_iterator_base1<const_iterator1> const_reverse_iterator1;
typedef reverse_iterator_base2<const_iterator2> const_reverse_iterator2;
// Element lookup
BOOST_UBLAS_INLINE
const_iterator1 find1 (int rank, size_type i, size_type j) const {
if (rank == 1) {
i = (std::max) (i, j);
i = (std::min) (i, j + 1);
}
return const_iterator1 (*this, i);
}
BOOST_UBLAS_INLINE
const_iterator2 find2 (int rank, size_type i, size_type j) const {
if (rank == 1) {
j = (std::max) (j, i);
j = (std::min) (j, i + 1);
}
return const_iterator2 (*this, j);
}
class const_iterator1:
public container_const_reference<identity_matrix>,
public bidirectional_iterator_base<sparse_bidirectional_iterator_tag,
const_iterator1, value_type> {
public:
typedef typename identity_matrix::value_type value_type;
typedef typename identity_matrix::difference_type difference_type;
typedef typename identity_matrix::const_reference reference;
typedef typename identity_matrix::const_pointer pointer;
typedef const_iterator2 dual_iterator_type;
typedef const_reverse_iterator2 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator1 ():
container_const_reference<self_type> (), it_ () {}
BOOST_UBLAS_INLINE
const_iterator1 (const self_type &m, const const_subiterator_type &it):
container_const_reference<self_type> (m), it_ (it) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator1 &operator ++ () {
BOOST_UBLAS_CHECK (it_ < (*this) ().size1 (), bad_index ());
++it_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator1 &operator -- () {
BOOST_UBLAS_CHECK (it_ > 0, bad_index ());
--it_;
return *this;
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
return one_;
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator2 begin () const {
return const_iterator2 ((*this) (), it_);
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator2 end () const {
return const_iterator2 ((*this) (), it_ + 1);
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator2 rbegin () const {
return const_reverse_iterator2 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator2 rend () const {
return const_reverse_iterator2 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
return it_;
}
BOOST_UBLAS_INLINE
size_type index2 () const {
return it_;
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator1 &operator = (const const_iterator1 &it) {
container_const_reference<self_type>::assign (&it ());
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it_ == it.it_;
}
private:
const_subiterator_type it_;
};
typedef const_iterator1 iterator1;
BOOST_UBLAS_INLINE
const_iterator1 begin1 () const {
return const_iterator1 (*this, 0);
}
BOOST_UBLAS_INLINE
const_iterator1 end1 () const {
return const_iterator1 (*this, size_common_);
}
class const_iterator2:
public container_const_reference<identity_matrix>,
public bidirectional_iterator_base<sparse_bidirectional_iterator_tag,
const_iterator2, value_type> {
public:
typedef typename identity_matrix::value_type value_type;
typedef typename identity_matrix::difference_type difference_type;
typedef typename identity_matrix::const_reference reference;
typedef typename identity_matrix::const_pointer pointer;
typedef const_iterator1 dual_iterator_type;
typedef const_reverse_iterator1 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator2 ():
container_const_reference<self_type> (), it_ () {}
BOOST_UBLAS_INLINE
const_iterator2 (const self_type &m, const const_subiterator_type &it):
container_const_reference<self_type> (m), it_ (it) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator2 &operator ++ () {
BOOST_UBLAS_CHECK (it_ < (*this) ().size_common_, bad_index ());
++it_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator2 &operator -- () {
BOOST_UBLAS_CHECK (it_ > 0, bad_index ());
--it_;
return *this;
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
return one_;
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator1 begin () const {
return const_iterator1 ((*this) (), it_);
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator1 end () const {
return const_iterator1 ((*this) (), it_ + 1);
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator1 rbegin () const {
return const_reverse_iterator1 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator1 rend () const {
return const_reverse_iterator1 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
return it_;
}
BOOST_UBLAS_INLINE
size_type index2 () const {
return it_;
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator2 &operator = (const const_iterator2 &it) {
container_const_reference<self_type>::assign (&it ());
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it_ == it.it_;
}
private:
const_subiterator_type it_;
};
typedef const_iterator2 iterator2;
BOOST_UBLAS_INLINE
const_iterator2 begin2 () const {
return const_iterator2 (*this, 0);
}
BOOST_UBLAS_INLINE
const_iterator2 end2 () const {
return const_iterator2 (*this, size_common_);
}
// Reverse iterators
BOOST_UBLAS_INLINE
const_reverse_iterator1 rbegin1 () const {
return const_reverse_iterator1 (end1 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator1 rend1 () const {
return const_reverse_iterator1 (begin1 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator2 rbegin2 () const {
return const_reverse_iterator2 (end2 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator2 rend2 () const {
return const_reverse_iterator2 (begin2 ());
}
// Serialization
template<class Archive>
void serialize(Archive & ar, const unsigned int /* file_version */){
// we need to copy to a collection_size_type to get a portable
// and efficient serialization
serialization::collection_size_type s1 (size1_);
serialization::collection_size_type s2 (size2_);
// serialize the sizes
ar & serialization::make_nvp("size1",s1)
& serialization::make_nvp("size2",s2);
// copy the values back if loading
if (Archive::is_loading::value) {
size1_ = s1;
size2_ = s2;
size_common_ = ((std::min)(size1_, size2_));
}
}
private:
size_type size1_;
size_type size2_;
size_type size_common_;
static const value_type zero_;
static const value_type one_;
};
template<class T, class ALLOC>
const typename identity_matrix<T, ALLOC>::value_type identity_matrix<T, ALLOC>::zero_ = T(/*zero*/);
template<class T, class ALLOC>
const typename identity_matrix<T, ALLOC>::value_type identity_matrix<T, ALLOC>::one_ (1); // ISSUE: need 'one'-traits here
/** \brief A matrix with all values of type \c T equal to the same value
*
* Changing one value has the effect of changing all the values. Assigning it to a normal matrix will copy
* the same value everywhere in this matrix. All accesses are constant time, due to the trivial value.
*
* \tparam T the type of object stored in the matrix (like double, float, complex, etc...)
* \tparam ALLOC an allocator for storing the unique value. By default, a standar allocator is used.
*/
template<class T, class ALLOC>
class scalar_matrix:
public matrix_container<scalar_matrix<T, ALLOC> > {
typedef const T *const_pointer;
typedef scalar_matrix<T, ALLOC> self_type;
public:
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
using matrix_container<self_type>::operator ();
#endif
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef T value_type;
typedef const T &const_reference;
typedef T &reference;
typedef const matrix_reference<const self_type> const_closure_type;
typedef matrix_reference<self_type> closure_type;
typedef dense_tag storage_category;
typedef unknown_orientation_tag orientation_category;
// Construction and destruction
BOOST_UBLAS_INLINE
scalar_matrix ():
matrix_container<self_type> (),
size1_ (0), size2_ (0), value_ () {}
BOOST_UBLAS_INLINE
scalar_matrix (size_type size1, size_type size2, const value_type &value = value_type(1)):
matrix_container<self_type> (),
size1_ (size1), size2_ (size2), value_ (value) {}
BOOST_UBLAS_INLINE
scalar_matrix (const scalar_matrix &m):
matrix_container<self_type> (),
size1_ (m.size1_), size2_ (m.size2_), value_ (m.value_) {}
// Accessors
BOOST_UBLAS_INLINE
size_type size1 () const {
return size1_;
}
BOOST_UBLAS_INLINE
size_type size2 () const {
return size2_;
}
// Resizing
BOOST_UBLAS_INLINE
void resize (size_type size1, size_type size2, bool /*preserve*/ = true) {
size1_ = size1;
size2_ = size2;
}
// Element access
BOOST_UBLAS_INLINE
const_reference operator () (size_type /*i*/, size_type /*j*/) const {
return value_;
}
// Assignment
BOOST_UBLAS_INLINE
scalar_matrix &operator = (const scalar_matrix &m) {
size1_ = m.size1_;
size2_ = m.size2_;
value_ = m.value_;
return *this;
}
BOOST_UBLAS_INLINE
scalar_matrix &assign_temporary (scalar_matrix &m) {
swap (m);
return *this;
}
// Swapping
BOOST_UBLAS_INLINE
void swap (scalar_matrix &m) {
if (this != &m) {
std::swap (size1_, m.size1_);
std::swap (size2_, m.size2_);
std::swap (value_, m.value_);
}
}
BOOST_UBLAS_INLINE
friend void swap (scalar_matrix &m1, scalar_matrix &m2) {
m1.swap (m2);
}
// Iterator types
private:
// Use an index
typedef size_type const_subiterator_type;
public:
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
typedef indexed_const_iterator1<self_type, dense_random_access_iterator_tag> iterator1;
typedef indexed_const_iterator2<self_type, dense_random_access_iterator_tag> iterator2;
typedef indexed_const_iterator1<self_type, dense_random_access_iterator_tag> const_iterator1;
typedef indexed_const_iterator2<self_type, dense_random_access_iterator_tag> const_iterator2;
#else
class const_iterator1;
class const_iterator2;
#endif
typedef reverse_iterator_base1<const_iterator1> const_reverse_iterator1;
typedef reverse_iterator_base2<const_iterator2> const_reverse_iterator2;
// Element lookup
BOOST_UBLAS_INLINE
const_iterator1 find1 (int /*rank*/, size_type i, size_type j) const {
return const_iterator1 (*this, i, j);
}
BOOST_UBLAS_INLINE
const_iterator2 find2 (int /*rank*/, size_type i, size_type j) const {
return const_iterator2 (*this, i, j);
}
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class const_iterator1:
public container_const_reference<scalar_matrix>,
public random_access_iterator_base<dense_random_access_iterator_tag,
const_iterator1, value_type> {
public:
typedef typename scalar_matrix::value_type value_type;
typedef typename scalar_matrix::difference_type difference_type;
typedef typename scalar_matrix::const_reference reference;
typedef typename scalar_matrix::const_pointer pointer;
typedef const_iterator2 dual_iterator_type;
typedef const_reverse_iterator2 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator1 ():
container_const_reference<scalar_matrix> (), it1_ (), it2_ () {}
BOOST_UBLAS_INLINE
const_iterator1 (const scalar_matrix &m, const const_subiterator_type &it1, const const_subiterator_type &it2):
container_const_reference<scalar_matrix> (m), it1_ (it1), it2_ (it2) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator1 &operator ++ () {
++ it1_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator1 &operator -- () {
-- it1_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator1 &operator += (difference_type n) {
it1_ += n;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator1 &operator -= (difference_type n) {
it1_ -= n;
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const const_iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ());
return it1_ - it.it1_;
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ());
BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ());
return (*this) () (index1 (), index2 ());
}
BOOST_UBLAS_INLINE
const_reference operator [] (difference_type n) const {
return *(*this + n);
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator2 begin () const {
const scalar_matrix &m = (*this) ();
return m.find2 (1, index1 (), 0);
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator2 end () const {
const scalar_matrix &m = (*this) ();
return m.find2 (1, index1 (), m.size2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator2 rbegin () const {
return const_reverse_iterator2 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator2 rend () const {
return const_reverse_iterator2 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
return it1_;
}
BOOST_UBLAS_INLINE
size_type index2 () const {
return it2_;
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator1 &operator = (const const_iterator1 &it) {
container_const_reference<scalar_matrix>::assign (&it ());
it1_ = it.it1_;
it2_ = it.it2_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ());
return it1_ == it.it1_;
}
BOOST_UBLAS_INLINE
bool operator < (const const_iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ());
return it1_ < it.it1_;
}
private:
const_subiterator_type it1_;
const_subiterator_type it2_;
};
typedef const_iterator1 iterator1;
#endif
BOOST_UBLAS_INLINE
const_iterator1 begin1 () const {
return find1 (0, 0, 0);
}
BOOST_UBLAS_INLINE
const_iterator1 end1 () const {
return find1 (0, size1_, 0);
}
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class const_iterator2:
public container_const_reference<scalar_matrix>,
public random_access_iterator_base<dense_random_access_iterator_tag,
const_iterator2, value_type> {
public:
typedef typename scalar_matrix::value_type value_type;
typedef typename scalar_matrix::difference_type difference_type;
typedef typename scalar_matrix::const_reference reference;
typedef typename scalar_matrix::const_pointer pointer;
typedef const_iterator1 dual_iterator_type;
typedef const_reverse_iterator1 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator2 ():
container_const_reference<scalar_matrix> (), it1_ (), it2_ () {}
BOOST_UBLAS_INLINE
const_iterator2 (const scalar_matrix &m, const const_subiterator_type &it1, const const_subiterator_type &it2):
container_const_reference<scalar_matrix> (m), it1_ (it1), it2_ (it2) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator2 &operator ++ () {
++ it2_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator2 &operator -- () {
-- it2_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator2 &operator += (difference_type n) {
it2_ += n;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator2 &operator -= (difference_type n) {
it2_ -= n;
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const const_iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ());
return it2_ - it.it2_;
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ());
BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ());
return (*this) () (index1 (), index2 ());
}
BOOST_UBLAS_INLINE
const_reference operator [] (difference_type n) const {
return *(*this + n);
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator1 begin () const {
const scalar_matrix &m = (*this) ();
return m.find1 (1, 0, index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator1 end () const {
const scalar_matrix &m = (*this) ();
return m.find1 (1, m.size1 (), index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator1 rbegin () const {
return const_reverse_iterator1 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator1 rend () const {
return const_reverse_iterator1 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
return it1_;
}
BOOST_UBLAS_INLINE
size_type index2 () const {
return it2_;
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator2 &operator = (const const_iterator2 &it) {
container_const_reference<scalar_matrix>::assign (&it ());
it1_ = it.it1_;
it2_ = it.it2_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ());
return it2_ == it.it2_;
}
BOOST_UBLAS_INLINE
bool operator < (const const_iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ());
return it2_ < it.it2_;
}
private:
const_subiterator_type it1_;
const_subiterator_type it2_;
};
typedef const_iterator2 iterator2;
#endif
BOOST_UBLAS_INLINE
const_iterator2 begin2 () const {
return find2 (0, 0, 0);
}
BOOST_UBLAS_INLINE
const_iterator2 end2 () const {
return find2 (0, 0, size2_);
}
// Reverse iterators
BOOST_UBLAS_INLINE
const_reverse_iterator1 rbegin1 () const {
return const_reverse_iterator1 (end1 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator1 rend1 () const {
return const_reverse_iterator1 (begin1 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator2 rbegin2 () const {
return const_reverse_iterator2 (end2 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator2 rend2 () const {
return const_reverse_iterator2 (begin2 ());
}
// Serialization
template<class Archive>
void serialize(Archive & ar, const unsigned int /* file_version */){
// we need to copy to a collection_size_type to get a portable
// and efficient serialization
serialization::collection_size_type s1 (size1_);
serialization::collection_size_type s2 (size2_);
// serialize the sizes
ar & serialization::make_nvp("size1",s1)
& serialization::make_nvp("size2",s2);
// copy the values back if loading
if (Archive::is_loading::value) {
size1_ = s1;
size2_ = s2;
}
ar & serialization::make_nvp("value", value_);
}
private:
size_type size1_;
size_type size2_;
value_type value_;
};
/** \brief An array based matrix class which size is defined at type specification or object instanciation
*
* This matrix is directly based on a predefined C-style arry of data, thus providing the fastest
* implementation possible. The constraint is that dimensions of the matrix must be specified at
* the instanciation or the type specification.
*
* For instance, \code typedef c_matrix<double,4,4> my_4by4_matrix \endcode
* defines a 4 by 4 double-precision matrix. You can also instantiate it directly with
* \code c_matrix<int,8,5> my_fast_matrix \endcode. This will make a 8 by 5 integer matrix. The
* price to pay for this speed is that you cannot resize it to a size larger than the one defined
* in the template parameters. In the previous example, a size of 4 by 5 or 3 by 2 is acceptable,
* but a new size of 9 by 5 or even 10 by 10 will raise a bad_size() exception.
*
* \tparam T the type of object stored in the matrix (like double, float, complex, etc...)
* \tparam N the default maximum number of rows
* \tparam M the default maximum number of columns
*/
template<class T, std::size_t N, std::size_t M>
class c_matrix:
public matrix_container<c_matrix<T, N, M> > {
typedef c_matrix<T, N, M> self_type;
public:
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
using matrix_container<self_type>::operator ();
#endif
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef T value_type;
typedef const T &const_reference;
typedef T &reference;
typedef const T *const_pointer;
typedef T *pointer;
typedef const matrix_reference<const self_type> const_closure_type;
typedef matrix_reference<self_type> closure_type;
typedef c_vector<T, N * M> vector_temporary_type; // vector able to store all elements of c_matrix
typedef self_type matrix_temporary_type;
typedef dense_tag storage_category;
// This could be better for performance,
// typedef typename unknown_orientation_tag orientation_category;
// but others depend on the orientation information...
typedef row_major_tag orientation_category;
// Construction and destruction
BOOST_UBLAS_INLINE
c_matrix ():
size1_ (N), size2_ (M) /* , data_ () */ {
}
BOOST_UBLAS_INLINE
c_matrix (size_type size1, size_type size2):
size1_ (size1), size2_ (size2) /* , data_ () */ {
if (size1_ > N || size2_ > M)
bad_size ().raise ();
}
BOOST_UBLAS_INLINE
c_matrix (const c_matrix &m):
size1_ (m.size1_), size2_ (m.size2_) /* , data_ () */ {
if (size1_ > N || size2_ > M)
bad_size ().raise ();
assign(m);
}
template<class AE>
BOOST_UBLAS_INLINE
c_matrix (const matrix_expression<AE> &ae):
size1_ (ae ().size1 ()), size2_ (ae ().size2 ()) /* , data_ () */ {
if (size1_ > N || size2_ > M)
bad_size ().raise ();
matrix_assign<scalar_assign> (*this, ae);
}
// Accessors
BOOST_UBLAS_INLINE
size_type size1 () const {
return size1_;
}
BOOST_UBLAS_INLINE
size_type size2 () const {
return size2_;
}
BOOST_UBLAS_INLINE
const_pointer data () const {
return reinterpret_cast<const_pointer> (data_);
}
BOOST_UBLAS_INLINE
pointer data () {
return reinterpret_cast<pointer> (data_);
}
// Resizing
BOOST_UBLAS_INLINE
void resize (size_type size1, size_type size2, bool preserve = true) {
if (size1 > N || size2 > M)
bad_size ().raise ();
if (preserve) {
self_type temporary (size1, size2);
// Common elements to preserve
const size_type size1_min = (std::min) (size1, size1_);
const size_type size2_min = (std::min) (size2, size2_);
for (size_type i = 0; i != size1_min; ++i) { // indexing copy over major
for (size_type j = 0; j != size2_min; ++j) {
temporary.data_[i][j] = data_[i][j];
}
}
assign_temporary (temporary);
}
else {
size1_ = size1;
size2_ = size2;
}
}
// Element access
BOOST_UBLAS_INLINE
const_reference operator () (size_type i, size_type j) const {
BOOST_UBLAS_CHECK (i < size1_, bad_index ());
BOOST_UBLAS_CHECK (j < size2_, bad_index ());
return data_ [i] [j];
}
BOOST_UBLAS_INLINE
reference at_element (size_type i, size_type j) {
BOOST_UBLAS_CHECK (i < size1_, bad_index ());
BOOST_UBLAS_CHECK (j < size2_, bad_index ());
return data_ [i] [j];
}
BOOST_UBLAS_INLINE
reference operator () (size_type i, size_type j) {
return at_element (i, j);
}
// Element assignment
BOOST_UBLAS_INLINE
reference insert_element (size_type i, size_type j, const_reference t) {
return (at_element (i, j) = t);
}
// Zeroing
BOOST_UBLAS_INLINE
void clear () {
for (size_type i = 0; i < size1_; ++ i)
std::fill (data_ [i], data_ [i] + size2_, value_type/*zero*/());
}
// Assignment
#ifdef BOOST_UBLAS_MOVE_SEMANTICS
/*! @note "pass by value" the key idea to enable move semantics */
BOOST_UBLAS_INLINE
c_matrix &operator = (c_matrix m) {
assign_temporary(m);
return *this;
}
#else
BOOST_UBLAS_INLINE
c_matrix &operator = (const c_matrix &m) {
size1_ = m.size1_;
size2_ = m.size2_;
for (size_type i = 0; i < m.size1_; ++ i)
std::copy (m.data_ [i], m.data_ [i] + m.size2_, data_ [i]);
return *this;
}
#endif
template<class C> // Container assignment without temporary
BOOST_UBLAS_INLINE
c_matrix &operator = (const matrix_container<C> &m) {
resize (m ().size1 (), m ().size2 (), false);
assign (m);
return *this;
}
BOOST_UBLAS_INLINE
c_matrix &assign_temporary (c_matrix &m) {
swap (m);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
c_matrix &operator = (const matrix_expression<AE> &ae) {
self_type temporary (ae);
return assign_temporary (temporary);
}
template<class AE>
BOOST_UBLAS_INLINE
c_matrix &assign (const matrix_expression<AE> &ae) {
matrix_assign<scalar_assign> (*this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
c_matrix& operator += (const matrix_expression<AE> &ae) {
self_type temporary (*this + ae);
return assign_temporary (temporary);
}
template<class C> // Container assignment without temporary
BOOST_UBLAS_INLINE
c_matrix &operator += (const matrix_container<C> &m) {
plus_assign (m);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
c_matrix &plus_assign (const matrix_expression<AE> &ae) {
matrix_assign<scalar_plus_assign> (*this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
c_matrix& operator -= (const matrix_expression<AE> &ae) {
self_type temporary (*this - ae);
return assign_temporary (temporary);
}
template<class C> // Container assignment without temporary
BOOST_UBLAS_INLINE
c_matrix &operator -= (const matrix_container<C> &m) {
minus_assign (m);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
c_matrix &minus_assign (const matrix_expression<AE> &ae) {
matrix_assign<scalar_minus_assign> (*this, ae);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
c_matrix& operator *= (const AT &at) {
matrix_assign_scalar<scalar_multiplies_assign> (*this, at);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
c_matrix& operator /= (const AT &at) {
matrix_assign_scalar<scalar_divides_assign> (*this, at);
return *this;
}
// Swapping
BOOST_UBLAS_INLINE
void swap (c_matrix &m) {
if (this != &m) {
BOOST_UBLAS_CHECK (size1_ == m.size1_, bad_size ());
BOOST_UBLAS_CHECK (size2_ == m.size2_, bad_size ());
std::swap (size1_, m.size1_);
std::swap (size2_, m.size2_);
for (size_type i = 0; i < size1_; ++ i)
std::swap_ranges (data_ [i], data_ [i] + size2_, m.data_ [i]);
}
}
BOOST_UBLAS_INLINE
friend void swap (c_matrix &m1, c_matrix &m2) {
m1.swap (m2);
}
// Iterator types
private:
// Use pointers for iterator
typedef const_pointer const_subiterator_type;
typedef pointer subiterator_type;
public:
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
typedef indexed_iterator1<self_type, dense_random_access_iterator_tag> iterator1;
typedef indexed_iterator2<self_type, dense_random_access_iterator_tag> iterator2;
typedef indexed_const_iterator1<self_type, dense_random_access_iterator_tag> const_iterator1;
typedef indexed_const_iterator2<self_type, dense_random_access_iterator_tag> const_iterator2;
#else
class const_iterator1;
class iterator1;
class const_iterator2;
class iterator2;
#endif
typedef reverse_iterator_base1<const_iterator1> const_reverse_iterator1;
typedef reverse_iterator_base1<iterator1> reverse_iterator1;
typedef reverse_iterator_base2<const_iterator2> const_reverse_iterator2;
typedef reverse_iterator_base2<iterator2> reverse_iterator2;
// Element lookup
BOOST_UBLAS_INLINE
const_iterator1 find1 (int rank, size_type i, size_type j) const {
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
return const_iterator1 (*this, i, j);
#else
return const_iterator1 (*this, &data_ [i] [j]);
#endif
}
BOOST_UBLAS_INLINE
iterator1 find1 (int rank, size_type i, size_type j) {
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
return iterator1 (*this, i, j);
#else
return iterator1 (*this, &data_ [i] [j]);
#endif
}
BOOST_UBLAS_INLINE
const_iterator2 find2 (int rank, size_type i, size_type j) const {
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
return const_iterator2 (*this, i, j);
#else
return const_iterator2 (*this, &data_ [i] [j]);
#endif
}
BOOST_UBLAS_INLINE
iterator2 find2 (int rank, size_type i, size_type j) {
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
return iterator2 (*this, i, j);
#else
return iterator2 (*this, &data_ [i] [j]);
#endif
}
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class const_iterator1:
public container_const_reference<c_matrix>,
public random_access_iterator_base<dense_random_access_iterator_tag,
const_iterator1, value_type> {
public:
typedef typename c_matrix::difference_type difference_type;
typedef typename c_matrix::value_type value_type;
typedef typename c_matrix::const_reference reference;
typedef typename c_matrix::const_pointer pointer;
typedef const_iterator2 dual_iterator_type;
typedef const_reverse_iterator2 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator1 ():
container_const_reference<self_type> (), it_ () {}
BOOST_UBLAS_INLINE
const_iterator1 (const self_type &m, const const_subiterator_type &it):
container_const_reference<self_type> (m), it_ (it) {}
BOOST_UBLAS_INLINE
const_iterator1 (const iterator1 &it):
container_const_reference<self_type> (it ()), it_ (it.it_) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator1 &operator ++ () {
it_ += M;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator1 &operator -- () {
it_ -= M;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator1 &operator += (difference_type n) {
it_ += n * M;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator1 &operator -= (difference_type n) {
it_ -= n * M;
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const const_iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return (it_ - it.it_) / M;
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ());
BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ());
return *it_;
}
BOOST_UBLAS_INLINE
const_reference operator [] (difference_type n) const {
return *(*this + n);
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator2 begin () const {
const self_type &m = (*this) ();
return m.find2 (1, index1 (), 0);
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator2 end () const {
const self_type &m = (*this) ();
return m.find2 (1, index1 (), m.size2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator2 rbegin () const {
return const_reverse_iterator2 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator2 rend () const {
return const_reverse_iterator2 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
const self_type &m = (*this) ();
return (it_ - m.begin1 ().it_) / M;
}
BOOST_UBLAS_INLINE
size_type index2 () const {
const self_type &m = (*this) ();
return (it_ - m.begin1 ().it_) % M;
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator1 &operator = (const const_iterator1 &it) {
container_const_reference<self_type>::assign (&it ());
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it_ == it.it_;
}
BOOST_UBLAS_INLINE
bool operator < (const const_iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it_ < it.it_;
}
private:
const_subiterator_type it_;
friend class iterator1;
};
#endif
BOOST_UBLAS_INLINE
const_iterator1 begin1 () const {
return find1 (0, 0, 0);
}
BOOST_UBLAS_INLINE
const_iterator1 end1 () const {
return find1 (0, size1_, 0);
}
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class iterator1:
public container_reference<c_matrix>,
public random_access_iterator_base<dense_random_access_iterator_tag,
iterator1, value_type> {
public:
typedef typename c_matrix::difference_type difference_type;
typedef typename c_matrix::value_type value_type;
typedef typename c_matrix::reference reference;
typedef typename c_matrix::pointer pointer;
typedef iterator2 dual_iterator_type;
typedef reverse_iterator2 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
iterator1 ():
container_reference<self_type> (), it_ () {}
BOOST_UBLAS_INLINE
iterator1 (self_type &m, const subiterator_type &it):
container_reference<self_type> (m), it_ (it) {}
// Arithmetic
BOOST_UBLAS_INLINE
iterator1 &operator ++ () {
it_ += M;
return *this;
}
BOOST_UBLAS_INLINE
iterator1 &operator -- () {
it_ -= M;
return *this;
}
BOOST_UBLAS_INLINE
iterator1 &operator += (difference_type n) {
it_ += n * M;
return *this;
}
BOOST_UBLAS_INLINE
iterator1 &operator -= (difference_type n) {
it_ -= n * M;
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return (it_ - it.it_) / M;
}
// Dereference
BOOST_UBLAS_INLINE
reference operator * () const {
BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ());
BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ());
return *it_;
}
BOOST_UBLAS_INLINE
reference operator [] (difference_type n) const {
return *(*this + n);
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator2 begin () const {
self_type &m = (*this) ();
return m.find2 (1, index1 (), 0);
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator2 end () const {
self_type &m = (*this) ();
return m.find2 (1, index1 (), m.size2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator2 rbegin () const {
return reverse_iterator2 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator2 rend () const {
return reverse_iterator2 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
const self_type &m = (*this) ();
return (it_ - m.begin1 ().it_) / M;
}
BOOST_UBLAS_INLINE
size_type index2 () const {
const self_type &m = (*this) ();
return (it_ - m.begin1 ().it_) % M;
}
// Assignment
BOOST_UBLAS_INLINE
iterator1 &operator = (const iterator1 &it) {
container_reference<self_type>::assign (&it ());
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it_ == it.it_;
}
BOOST_UBLAS_INLINE
bool operator < (const iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it_ < it.it_;
}
private:
subiterator_type it_;
friend class const_iterator1;
};
#endif
BOOST_UBLAS_INLINE
iterator1 begin1 () {
return find1 (0, 0, 0);
}
BOOST_UBLAS_INLINE
iterator1 end1 () {
return find1 (0, size1_, 0);
}
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class const_iterator2:
public container_const_reference<c_matrix>,
public random_access_iterator_base<dense_random_access_iterator_tag,
const_iterator2, value_type> {
public:
typedef typename c_matrix::difference_type difference_type;
typedef typename c_matrix::value_type value_type;
typedef typename c_matrix::const_reference reference;
typedef typename c_matrix::const_reference pointer;
typedef const_iterator1 dual_iterator_type;
typedef const_reverse_iterator1 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator2 ():
container_const_reference<self_type> (), it_ () {}
BOOST_UBLAS_INLINE
const_iterator2 (const self_type &m, const const_subiterator_type &it):
container_const_reference<self_type> (m), it_ (it) {}
BOOST_UBLAS_INLINE
const_iterator2 (const iterator2 &it):
container_const_reference<self_type> (it ()), it_ (it.it_) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator2 &operator ++ () {
++ it_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator2 &operator -- () {
-- it_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator2 &operator += (difference_type n) {
it_ += n;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator2 &operator -= (difference_type n) {
it_ -= n;
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const const_iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it_ - it.it_;
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ());
BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ());
return *it_;
}
BOOST_UBLAS_INLINE
const_reference operator [] (difference_type n) const {
return *(*this + n);
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator1 begin () const {
const self_type &m = (*this) ();
return m.find1 (1, 0, index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator1 end () const {
const self_type &m = (*this) ();
return m.find1 (1, m.size1 (), index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator1 rbegin () const {
return const_reverse_iterator1 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator1 rend () const {
return const_reverse_iterator1 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
const self_type &m = (*this) ();
return (it_ - m.begin2 ().it_) / M;
}
BOOST_UBLAS_INLINE
size_type index2 () const {
const self_type &m = (*this) ();
return (it_ - m.begin2 ().it_) % M;
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator2 &operator = (const const_iterator2 &it) {
container_const_reference<self_type>::assign (&it ());
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it_ == it.it_;
}
BOOST_UBLAS_INLINE
bool operator < (const const_iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it_ < it.it_;
}
private:
const_subiterator_type it_;
friend class iterator2;
};
#endif
BOOST_UBLAS_INLINE
const_iterator2 begin2 () const {
return find2 (0, 0, 0);
}
BOOST_UBLAS_INLINE
const_iterator2 end2 () const {
return find2 (0, 0, size2_);
}
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class iterator2:
public container_reference<c_matrix>,
public random_access_iterator_base<dense_random_access_iterator_tag,
iterator2, value_type> {
public:
typedef typename c_matrix::difference_type difference_type;
typedef typename c_matrix::value_type value_type;
typedef typename c_matrix::reference reference;
typedef typename c_matrix::pointer pointer;
typedef iterator1 dual_iterator_type;
typedef reverse_iterator1 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
iterator2 ():
container_reference<self_type> (), it_ () {}
BOOST_UBLAS_INLINE
iterator2 (self_type &m, const subiterator_type &it):
container_reference<self_type> (m), it_ (it) {}
// Arithmetic
BOOST_UBLAS_INLINE
iterator2 &operator ++ () {
++ it_;
return *this;
}
BOOST_UBLAS_INLINE
iterator2 &operator -- () {
-- it_;
return *this;
}
BOOST_UBLAS_INLINE
iterator2 &operator += (difference_type n) {
it_ += n;
return *this;
}
BOOST_UBLAS_INLINE
iterator2 &operator -= (difference_type n) {
it_ -= n;
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it_ - it.it_;
}
// Dereference
BOOST_UBLAS_INLINE
reference operator * () const {
BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ());
BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ());
return *it_;
}
BOOST_UBLAS_INLINE
reference operator [] (difference_type n) const {
return *(*this + n);
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator1 begin () const {
self_type &m = (*this) ();
return m.find1 (1, 0, index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator1 end () const {
self_type &m = (*this) ();
return m.find1 (1, m.size1 (), index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator1 rbegin () const {
return reverse_iterator1 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator1 rend () const {
return reverse_iterator1 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
const self_type &m = (*this) ();
return (it_ - m.begin2 ().it_) / M;
}
BOOST_UBLAS_INLINE
size_type index2 () const {
const self_type &m = (*this) ();
return (it_ - m.begin2 ().it_) % M;
}
// Assignment
BOOST_UBLAS_INLINE
iterator2 &operator = (const iterator2 &it) {
container_reference<self_type>::assign (&it ());
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it_ == it.it_;
}
BOOST_UBLAS_INLINE
bool operator < (const iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it_ < it.it_;
}
private:
subiterator_type it_;
friend class const_iterator2;
};
#endif
BOOST_UBLAS_INLINE
iterator2 begin2 () {
return find2 (0, 0, 0);
}
BOOST_UBLAS_INLINE
iterator2 end2 () {
return find2 (0, 0, size2_);
}
// Reverse iterators
BOOST_UBLAS_INLINE
const_reverse_iterator1 rbegin1 () const {
return const_reverse_iterator1 (end1 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator1 rend1 () const {
return const_reverse_iterator1 (begin1 ());
}
BOOST_UBLAS_INLINE
reverse_iterator1 rbegin1 () {
return reverse_iterator1 (end1 ());
}
BOOST_UBLAS_INLINE
reverse_iterator1 rend1 () {
return reverse_iterator1 (begin1 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator2 rbegin2 () const {
return const_reverse_iterator2 (end2 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator2 rend2 () const {
return const_reverse_iterator2 (begin2 ());
}
BOOST_UBLAS_INLINE
reverse_iterator2 rbegin2 () {
return reverse_iterator2 (end2 ());
}
BOOST_UBLAS_INLINE
reverse_iterator2 rend2 () {
return reverse_iterator2 (begin2 ());
}
// Serialization
template<class Archive>
void serialize(Archive & ar, const unsigned int /* file_version */){
// we need to copy to a collection_size_type to get a portable
// and efficient serialization
serialization::collection_size_type s1 (size1_);
serialization::collection_size_type s2 (size2_);
// serialize the sizes
ar & serialization::make_nvp("size1",s1)
& serialization::make_nvp("size2",s2);
// copy the values back if loading
if (Archive::is_loading::value) {
size1_ = s1;
size2_ = s2;
}
// could probably use make_array( &(data[0][0]), N*M )
ar & serialization::make_array(data_, N);
}
private:
size_type size1_;
size_type size2_;
value_type data_ [N] [M];
};
}}}
#endif