boost/property_tree/detail/ptree_implementation.hpp
// ----------------------------------------------------------------------------
// Copyright (C) 2002-2006 Marcin Kalicinski
// Copyright (C) 2009 Sebastian Redl
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// For more information, see www.boost.org
// ----------------------------------------------------------------------------
#ifndef BOOST_PROPERTY_TREE_DETAIL_PTREE_IMPLEMENTATION_HPP_INCLUDED
#define BOOST_PROPERTY_TREE_DETAIL_PTREE_IMPLEMENTATION_HPP_INCLUDED
#include <boost/iterator/iterator_adaptor.hpp>
#include <boost/iterator/reverse_iterator.hpp>
#include <boost/assert.hpp>
#include <boost/utility/swap.hpp>
#include <memory>
#if (defined(BOOST_MSVC) && \
(_MSC_FULL_VER >= 160000000 && _MSC_FULL_VER < 170000000)) || \
(defined(BOOST_INTEL_WIN) && \
defined(BOOST_DINKUMWARE_STDLIB))
#define BOOST_PROPERTY_TREE_PAIR_BUG
#endif
namespace boost { namespace property_tree
{
template <class K, class D, class C>
struct basic_ptree<K, D, C>::subs
{
struct by_name {};
// The actual child container.
#if defined(BOOST_PROPERTY_TREE_PAIR_BUG)
// MSVC 10 has moved std::pair's members to a base
// class. Unfortunately this does break the interface.
BOOST_STATIC_CONSTANT(unsigned,
first_offset = offsetof(value_type, first));
#endif
typedef multi_index_container<value_type,
multi_index::indexed_by<
multi_index::sequenced<>,
multi_index::ordered_non_unique<multi_index::tag<by_name>,
#if defined(BOOST_PROPERTY_TREE_PAIR_BUG)
multi_index::member_offset<value_type, const key_type,
first_offset>,
#else
multi_index::member<value_type, const key_type,
&value_type::first>,
#endif
key_compare
>
>
> base_container;
// The by-name lookup index.
typedef typename base_container::template index<by_name>::type
by_name_index;
// Access functions for getting to the children of a tree.
static base_container& ch(self_type *s) {
return *static_cast<base_container*>(s->m_children);
}
static const base_container& ch(const self_type *s) {
return *static_cast<const base_container*>(s->m_children);
}
static by_name_index& assoc(self_type *s) {
return ch(s).BOOST_NESTED_TEMPLATE get<by_name>();
}
static const by_name_index& assoc(const self_type *s) {
return ch(s).BOOST_NESTED_TEMPLATE get<by_name>();
}
};
template <class K, class D, class C>
class basic_ptree<K, D, C>::iterator : public boost::iterator_adaptor<
iterator, typename subs::base_container::iterator, value_type>
{
friend class boost::iterator_core_access;
typedef boost::iterator_adaptor<
iterator, typename subs::base_container::iterator, value_type>
baset;
public:
typedef typename baset::reference reference;
iterator() {}
explicit iterator(typename iterator::base_type b)
: iterator::iterator_adaptor_(b)
{}
reference dereference() const
{
// multi_index doesn't allow modification of its values, because
// indexes could sort by anything, and modification screws that up.
// However, we only sort by the key, and it's protected against
// modification in the value_type, so this const_cast is safe.
return const_cast<reference>(*this->base_reference());
}
};
template <class K, class D, class C>
class basic_ptree<K, D, C>::const_iterator : public boost::iterator_adaptor<
const_iterator, typename subs::base_container::const_iterator>
{
public:
const_iterator() {}
explicit const_iterator(typename const_iterator::base_type b)
: const_iterator::iterator_adaptor_(b)
{}
const_iterator(iterator b)
: const_iterator::iterator_adaptor_(b.base())
{}
};
template <class K, class D, class C>
class basic_ptree<K, D, C>::reverse_iterator
: public boost::reverse_iterator<iterator>
{
public:
reverse_iterator() {}
explicit reverse_iterator(iterator b)
: boost::reverse_iterator<iterator>(b)
{}
};
template <class K, class D, class C>
class basic_ptree<K, D, C>::const_reverse_iterator
: public boost::reverse_iterator<const_iterator>
{
public:
const_reverse_iterator() {}
explicit const_reverse_iterator(const_iterator b)
: boost::reverse_iterator<const_iterator>(b)
{}
const_reverse_iterator(
typename basic_ptree<K, D, C>::reverse_iterator b)
: boost::reverse_iterator<const_iterator>(b)
{}
};
template <class K, class D, class C>
class basic_ptree<K, D, C>::assoc_iterator
: public boost::iterator_adaptor<assoc_iterator,
typename subs::by_name_index::iterator,
value_type>
{
friend class boost::iterator_core_access;
typedef boost::iterator_adaptor<assoc_iterator,
typename subs::by_name_index::iterator,
value_type>
baset;
public:
typedef typename baset::reference reference;
assoc_iterator() {}
explicit assoc_iterator(typename assoc_iterator::base_type b)
: assoc_iterator::iterator_adaptor_(b)
{}
reference dereference() const
{
return const_cast<reference>(*this->base_reference());
}
};
template <class K, class D, class C>
class basic_ptree<K, D, C>::const_assoc_iterator
: public boost::iterator_adaptor<const_assoc_iterator,
typename subs::by_name_index::const_iterator>
{
public:
const_assoc_iterator() {}
explicit const_assoc_iterator(
typename const_assoc_iterator::base_type b)
: const_assoc_iterator::iterator_adaptor_(b)
{}
const_assoc_iterator(assoc_iterator b)
: const_assoc_iterator::iterator_adaptor_(b.base())
{}
};
// Big five
// Perhaps the children collection could be created on-demand only, to
// reduce heap traffic. But that's a lot more work to implement.
template<class K, class D, class C> inline
basic_ptree<K, D, C>::basic_ptree()
: m_children(new typename subs::base_container)
{
}
template<class K, class D, class C> inline
basic_ptree<K, D, C>::basic_ptree(const data_type &d)
: m_data(d), m_children(new typename subs::base_container)
{
}
template<class K, class D, class C> inline
basic_ptree<K, D, C>::basic_ptree(const basic_ptree<K, D, C> &rhs)
: m_data(rhs.m_data),
m_children(new typename subs::base_container(subs::ch(&rhs)))
{
}
template<class K, class D, class C>
basic_ptree<K, D, C> &
basic_ptree<K, D, C>::operator =(const basic_ptree<K, D, C> &rhs)
{
self_type(rhs).swap(*this);
return *this;
}
template<class K, class D, class C>
basic_ptree<K, D, C>::~basic_ptree()
{
delete &subs::ch(this);
}
template<class K, class D, class C> inline
void basic_ptree<K, D, C>::swap(basic_ptree<K, D, C> &rhs)
{
boost::swap(m_data, rhs.m_data);
// Void pointers, no ADL necessary
std::swap(m_children, rhs.m_children);
}
// Container view
template<class K, class D, class C> inline
typename basic_ptree<K, D, C>::size_type
basic_ptree<K, D, C>::size() const
{
return subs::ch(this).size();
}
template<class K, class D, class C> inline
typename basic_ptree<K, D, C>::size_type
basic_ptree<K, D, C>::max_size() const
{
return subs::ch(this).max_size();
}
template<class K, class D, class C> inline
bool basic_ptree<K, D, C>::empty() const
{
return subs::ch(this).empty();
}
template<class K, class D, class C> inline
typename basic_ptree<K, D, C>::iterator
basic_ptree<K, D, C>::begin()
{
return iterator(subs::ch(this).begin());
}
template<class K, class D, class C> inline
typename basic_ptree<K, D, C>::const_iterator
basic_ptree<K, D, C>::begin() const
{
return const_iterator(subs::ch(this).begin());
}
template<class K, class D, class C> inline
typename basic_ptree<K, D, C>::iterator
basic_ptree<K, D, C>::end()
{
return iterator(subs::ch(this).end());
}
template<class K, class D, class C> inline
typename basic_ptree<K, D, C>::const_iterator
basic_ptree<K, D, C>::end() const
{
return const_iterator(subs::ch(this).end());
}
template<class K, class D, class C> inline
typename basic_ptree<K, D, C>::reverse_iterator
basic_ptree<K, D, C>::rbegin()
{
return reverse_iterator(this->end());
}
template<class K, class D, class C> inline
typename basic_ptree<K, D, C>::const_reverse_iterator
basic_ptree<K, D, C>::rbegin() const
{
return const_reverse_iterator(this->end());
}
template<class K, class D, class C> inline
typename basic_ptree<K, D, C>::reverse_iterator
basic_ptree<K, D, C>::rend()
{
return reverse_iterator(this->begin());
}
template<class K, class D, class C> inline
typename basic_ptree<K, D, C>::const_reverse_iterator
basic_ptree<K, D, C>::rend() const
{
return const_reverse_iterator(this->begin());
}
template<class K, class D, class C> inline
typename basic_ptree<K, D, C>::value_type &
basic_ptree<K, D, C>::front()
{
return const_cast<value_type&>(subs::ch(this).front());
}
template<class K, class D, class C> inline
const typename basic_ptree<K, D, C>::value_type &
basic_ptree<K, D, C>::front() const
{
return subs::ch(this).front();
}
template<class K, class D, class C> inline
typename basic_ptree<K, D, C>::value_type &
basic_ptree<K, D, C>::back()
{
return const_cast<value_type&>(subs::ch(this).back());
}
template<class K, class D, class C> inline
const typename basic_ptree<K, D, C>::value_type &
basic_ptree<K, D, C>::back() const
{
return subs::ch(this).back();
}
template<class K, class D, class C> inline
typename basic_ptree<K, D, C>::iterator
basic_ptree<K, D, C>::insert(iterator where, const value_type &value)
{
return iterator(subs::ch(this).insert(where.base(), value).first);
}
template<class K, class D, class C>
template<class It> inline
void basic_ptree<K, D, C>::insert(iterator where, It first, It last)
{
subs::ch(this).insert(where.base(), first, last);
}
template<class K, class D, class C> inline
typename basic_ptree<K, D, C>::iterator
basic_ptree<K, D, C>::erase(iterator where)
{
return iterator(subs::ch(this).erase(where.base()));
}
template<class K, class D, class C> inline
typename basic_ptree<K, D, C>::iterator
basic_ptree<K, D, C>::erase(iterator first, iterator last)
{
return iterator(subs::ch(this).erase(first.base(), last.base()));
}
template<class K, class D, class C> inline
typename basic_ptree<K, D, C>::iterator
basic_ptree<K, D, C>::push_front(const value_type &value)
{
return iterator(subs::ch(this).push_front(value).first);
}
template<class K, class D, class C> inline
typename basic_ptree<K, D, C>::iterator
basic_ptree<K, D, C>::push_back(const value_type &value)
{
return iterator(subs::ch(this).push_back(value).first);
}
template<class K, class D, class C> inline
void basic_ptree<K, D, C>::pop_front()
{
subs::ch(this).pop_front();
}
template<class K, class D, class C> inline
void basic_ptree<K, D, C>::pop_back()
{
subs::ch(this).pop_back();
}
template<class K, class D, class C> inline
void basic_ptree<K, D, C>::reverse()
{
subs::ch(this).reverse();
}
namespace impl
{
struct by_first
{
template <typename P>
bool operator ()(const P& lhs, const P& rhs) const {
return lhs.first < rhs.first;
}
};
}
template<class K, class D, class C> inline
void basic_ptree<K, D, C>::sort()
{
sort(impl::by_first());
}
template<class K, class D, class C>
template<class Compare> inline
void basic_ptree<K, D, C>::sort(Compare comp)
{
subs::ch(this).sort(comp);
}
// Equality
template<class K, class D, class C> inline
bool basic_ptree<K, D, C>::operator ==(
const basic_ptree<K, D, C> &rhs) const
{
// The size test is cheap, so add it as an optimization
return size() == rhs.size() && data() == rhs.data() &&
subs::ch(this) == subs::ch(&rhs);
}
template<class K, class D, class C> inline
bool basic_ptree<K, D, C>::operator !=(
const basic_ptree<K, D, C> &rhs) const
{
return !(*this == rhs);
}
// Associative view
template<class K, class D, class C> inline
typename basic_ptree<K, D, C>::assoc_iterator
basic_ptree<K, D, C>::ordered_begin()
{
return assoc_iterator(subs::assoc(this).begin());
}
template<class K, class D, class C> inline
typename basic_ptree<K, D, C>::const_assoc_iterator
basic_ptree<K, D, C>::ordered_begin() const
{
return const_assoc_iterator(subs::assoc(this).begin());
}
template<class K, class D, class C> inline
typename basic_ptree<K, D, C>::assoc_iterator
basic_ptree<K, D, C>::not_found()
{
return assoc_iterator(subs::assoc(this).end());
}
template<class K, class D, class C> inline
typename basic_ptree<K, D, C>::const_assoc_iterator
basic_ptree<K, D, C>::not_found() const
{
return const_assoc_iterator(subs::assoc(this).end());
}
template<class K, class D, class C> inline
typename basic_ptree<K, D, C>::assoc_iterator
basic_ptree<K, D, C>::find(const key_type &key)
{
return assoc_iterator(subs::assoc(this).find(key));
}
template<class K, class D, class C> inline
typename basic_ptree<K, D, C>::const_assoc_iterator
basic_ptree<K, D, C>::find(const key_type &key) const
{
return const_assoc_iterator(subs::assoc(this).find(key));
}
template<class K, class D, class C> inline
std::pair<
typename basic_ptree<K, D, C>::assoc_iterator,
typename basic_ptree<K, D, C>::assoc_iterator
> basic_ptree<K, D, C>::equal_range(const key_type &key)
{
std::pair<typename subs::by_name_index::iterator,
typename subs::by_name_index::iterator> r(
subs::assoc(this).equal_range(key));
return std::pair<assoc_iterator, assoc_iterator>(
assoc_iterator(r.first), assoc_iterator(r.second));
}
template<class K, class D, class C> inline
std::pair<
typename basic_ptree<K, D, C>::const_assoc_iterator,
typename basic_ptree<K, D, C>::const_assoc_iterator
> basic_ptree<K, D, C>::equal_range(const key_type &key) const
{
std::pair<typename subs::by_name_index::const_iterator,
typename subs::by_name_index::const_iterator> r(
subs::assoc(this).equal_range(key));
return std::pair<const_assoc_iterator, const_assoc_iterator>(
const_assoc_iterator(r.first), const_assoc_iterator(r.second));
}
template<class K, class D, class C> inline
typename basic_ptree<K, D, C>::size_type
basic_ptree<K, D, C>::count(const key_type &key) const
{
return subs::assoc(this).count(key);
}
template<class K, class D, class C> inline
typename basic_ptree<K, D, C>::size_type
basic_ptree<K, D, C>::erase(const key_type &key)
{
return subs::assoc(this).erase(key);
}
template<class K, class D, class C> inline
typename basic_ptree<K, D, C>::iterator
basic_ptree<K, D, C>::to_iterator(assoc_iterator ai)
{
return iterator(subs::ch(this).
BOOST_NESTED_TEMPLATE project<0>(ai.base()));
}
template<class K, class D, class C> inline
typename basic_ptree<K, D, C>::const_iterator
basic_ptree<K, D, C>::to_iterator(const_assoc_iterator ai) const
{
return const_iterator(subs::ch(this).
BOOST_NESTED_TEMPLATE project<0>(ai.base()));
}
// Property tree view
template<class K, class D, class C> inline
typename basic_ptree<K, D, C>::data_type &
basic_ptree<K, D, C>::data()
{
return m_data;
}
template<class K, class D, class C> inline
const typename basic_ptree<K, D, C>::data_type &
basic_ptree<K, D, C>::data() const
{
return m_data;
}
template<class K, class D, class C> inline
void basic_ptree<K, D, C>::clear()
{
m_data = data_type();
subs::ch(this).clear();
}
template<class K, class D, class C>
basic_ptree<K, D, C> &
basic_ptree<K, D, C>::get_child(const path_type &path)
{
path_type p(path);
self_type *n = walk_path(p);
if (!n) {
BOOST_PROPERTY_TREE_THROW(ptree_bad_path("No such node", path));
}
return *n;
}
template<class K, class D, class C> inline
const basic_ptree<K, D, C> &
basic_ptree<K, D, C>::get_child(const path_type &path) const
{
return const_cast<self_type*>(this)->get_child(path);
}
template<class K, class D, class C> inline
basic_ptree<K, D, C> &
basic_ptree<K, D, C>::get_child(const path_type &path,
self_type &default_value)
{
path_type p(path);
self_type *n = walk_path(p);
return n ? *n : default_value;
}
template<class K, class D, class C> inline
const basic_ptree<K, D, C> &
basic_ptree<K, D, C>::get_child(const path_type &path,
const self_type &default_value) const
{
return const_cast<self_type*>(this)->get_child(path,
const_cast<self_type&>(default_value));
}
template<class K, class D, class C>
optional<basic_ptree<K, D, C> &>
basic_ptree<K, D, C>::get_child_optional(const path_type &path)
{
path_type p(path);
self_type *n = walk_path(p);
if (!n) {
return optional<self_type&>();
}
return *n;
}
template<class K, class D, class C>
optional<const basic_ptree<K, D, C> &>
basic_ptree<K, D, C>::get_child_optional(const path_type &path) const
{
path_type p(path);
self_type *n = walk_path(p);
if (!n) {
return optional<const self_type&>();
}
return *n;
}
template<class K, class D, class C>
basic_ptree<K, D, C> &
basic_ptree<K, D, C>::put_child(const path_type &path,
const self_type &value)
{
path_type p(path);
self_type &parent = force_path(p);
// Got the parent. Now get the correct child.
key_type fragment = p.reduce();
assoc_iterator el = parent.find(fragment);
// If the new child exists, replace it.
if(el != parent.not_found()) {
return el->second = value;
} else {
return parent.push_back(value_type(fragment, value))->second;
}
}
template<class K, class D, class C>
basic_ptree<K, D, C> &
basic_ptree<K, D, C>::add_child(const path_type &path,
const self_type &value)
{
path_type p(path);
self_type &parent = force_path(p);
// Got the parent.
key_type fragment = p.reduce();
return parent.push_back(value_type(fragment, value))->second;
}
template<class K, class D, class C>
template<class Type, class Translator>
typename boost::enable_if<detail::is_translator<Translator>, Type>::type
basic_ptree<K, D, C>::get_value(Translator tr) const
{
if(boost::optional<Type> o = get_value_optional<Type>(tr)) {
return *o;
}
BOOST_PROPERTY_TREE_THROW(ptree_bad_data(
std::string("conversion of data to type \"") +
typeid(Type).name() + "\" failed", data()));
}
template<class K, class D, class C>
template<class Type> inline
Type basic_ptree<K, D, C>::get_value() const
{
return get_value<Type>(
typename translator_between<data_type, Type>::type());
}
template<class K, class D, class C>
template<class Type, class Translator> inline
Type basic_ptree<K, D, C>::get_value(const Type &default_value,
Translator tr) const
{
return get_value_optional<Type>(tr).get_value_or(default_value);
}
template<class K, class D, class C>
template <class Ch, class Translator>
typename boost::enable_if<
detail::is_character<Ch>,
std::basic_string<Ch>
>::type
basic_ptree<K, D, C>::get_value(const Ch *default_value, Translator tr)const
{
return get_value<std::basic_string<Ch>, Translator>(default_value, tr);
}
template<class K, class D, class C>
template<class Type> inline
typename boost::disable_if<detail::is_translator<Type>, Type>::type
basic_ptree<K, D, C>::get_value(const Type &default_value) const
{
return get_value(default_value,
typename translator_between<data_type, Type>::type());
}
template<class K, class D, class C>
template <class Ch>
typename boost::enable_if<
detail::is_character<Ch>,
std::basic_string<Ch>
>::type
basic_ptree<K, D, C>::get_value(const Ch *default_value) const
{
return get_value< std::basic_string<Ch> >(default_value);
}
template<class K, class D, class C>
template<class Type, class Translator> inline
optional<Type> basic_ptree<K, D, C>::get_value_optional(
Translator tr) const
{
return tr.get_value(data());
}
template<class K, class D, class C>
template<class Type> inline
optional<Type> basic_ptree<K, D, C>::get_value_optional() const
{
return get_value_optional<Type>(
typename translator_between<data_type, Type>::type());
}
template<class K, class D, class C>
template<class Type, class Translator> inline
typename boost::enable_if<detail::is_translator<Translator>, Type>::type
basic_ptree<K, D, C>::get(const path_type &path,
Translator tr) const
{
return get_child(path).BOOST_NESTED_TEMPLATE get_value<Type>(tr);
}
template<class K, class D, class C>
template<class Type> inline
Type basic_ptree<K, D, C>::get(const path_type &path) const
{
return get_child(path).BOOST_NESTED_TEMPLATE get_value<Type>();
}
template<class K, class D, class C>
template<class Type, class Translator> inline
Type basic_ptree<K, D, C>::get(const path_type &path,
const Type &default_value,
Translator tr) const
{
return get_optional<Type>(path, tr).get_value_or(default_value);
}
template<class K, class D, class C>
template <class Ch, class Translator>
typename boost::enable_if<
detail::is_character<Ch>,
std::basic_string<Ch>
>::type
basic_ptree<K, D, C>::get(
const path_type &path, const Ch *default_value, Translator tr) const
{
return get<std::basic_string<Ch>, Translator>(path, default_value, tr);
}
template<class K, class D, class C>
template<class Type> inline
typename boost::disable_if<detail::is_translator<Type>, Type>::type
basic_ptree<K, D, C>::get(const path_type &path,
const Type &default_value) const
{
return get_optional<Type>(path).get_value_or(default_value);
}
template<class K, class D, class C>
template <class Ch>
typename boost::enable_if<
detail::is_character<Ch>,
std::basic_string<Ch>
>::type
basic_ptree<K, D, C>::get(
const path_type &path, const Ch *default_value) const
{
return get< std::basic_string<Ch> >(path, default_value);
}
template<class K, class D, class C>
template<class Type, class Translator>
optional<Type> basic_ptree<K, D, C>::get_optional(const path_type &path,
Translator tr) const
{
if (optional<const self_type&> child = get_child_optional(path))
return child.get().
BOOST_NESTED_TEMPLATE get_value_optional<Type>(tr);
else
return optional<Type>();
}
template<class K, class D, class C>
template<class Type>
optional<Type> basic_ptree<K, D, C>::get_optional(
const path_type &path) const
{
if (optional<const self_type&> child = get_child_optional(path))
return child.get().BOOST_NESTED_TEMPLATE get_value_optional<Type>();
else
return optional<Type>();
}
template<class K, class D, class C>
template<class Type, class Translator>
void basic_ptree<K, D, C>::put_value(const Type &value, Translator tr)
{
if(optional<data_type> o = tr.put_value(value)) {
data() = *o;
} else {
BOOST_PROPERTY_TREE_THROW(ptree_bad_data(
std::string("conversion of type \"") + typeid(Type).name() +
"\" to data failed", boost::any()));
}
}
template<class K, class D, class C>
template<class Type> inline
void basic_ptree<K, D, C>::put_value(const Type &value)
{
put_value(value, typename translator_between<data_type, Type>::type());
}
template<class K, class D, class C>
template<class Type, typename Translator>
basic_ptree<K, D, C> & basic_ptree<K, D, C>::put(
const path_type &path, const Type &value, Translator tr)
{
if(optional<self_type &> child = get_child_optional(path)) {
child.get().put_value(value, tr);
return *child;
} else {
self_type &child2 = put_child(path, self_type());
child2.put_value(value, tr);
return child2;
}
}
template<class K, class D, class C>
template<class Type> inline
basic_ptree<K, D, C> & basic_ptree<K, D, C>::put(
const path_type &path, const Type &value)
{
return put(path, value,
typename translator_between<data_type, Type>::type());
}
template<class K, class D, class C>
template<class Type, typename Translator> inline
basic_ptree<K, D, C> & basic_ptree<K, D, C>::add(
const path_type &path, const Type &value, Translator tr)
{
self_type &child = add_child(path, self_type());
child.put_value(value, tr);
return child;
}
template<class K, class D, class C>
template<class Type> inline
basic_ptree<K, D, C> & basic_ptree<K, D, C>::add(
const path_type &path, const Type &value)
{
return add(path, value,
typename translator_between<data_type, Type>::type());
}
template<class K, class D, class C>
basic_ptree<K, D, C> *
basic_ptree<K, D, C>::walk_path(path_type &p) const
{
if(p.empty()) {
// I'm the child we're looking for.
return const_cast<basic_ptree*>(this);
}
// Recurse down the tree to find the path.
key_type fragment = p.reduce();
const_assoc_iterator el = find(fragment);
if(el == not_found()) {
// No such child.
return 0;
}
// Not done yet, recurse.
return el->second.walk_path(p);
}
template<class K, class D, class C>
basic_ptree<K, D, C> & basic_ptree<K, D, C>::force_path(path_type &p)
{
BOOST_ASSERT(!p.empty() && "Empty path not allowed for put_child.");
if(p.single()) {
// I'm the parent we're looking for.
return *this;
}
key_type fragment = p.reduce();
assoc_iterator el = find(fragment);
// If we've found an existing child, go down that path. Else
// create a new one.
self_type& child = el == not_found() ?
push_back(value_type(fragment, self_type()))->second : el->second;
return child.force_path(p);
}
// Free functions
template<class K, class D, class C>
inline void swap(basic_ptree<K, D, C> &pt1, basic_ptree<K, D, C> &pt2)
{
pt1.swap(pt2);
}
} }
#if defined(BOOST_PROPERTY_TREE_PAIR_BUG)
#undef BOOST_PROPERTY_TREE_PAIR_BUG
#endif
#endif