boost/intrusive/bstree_algorithms.hpp
/////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2007-2014
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/intrusive for documentation.
//
/////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_INTRUSIVE_BSTREE_ALGORITHMS_HPP
#define BOOST_INTRUSIVE_BSTREE_ALGORITHMS_HPP
#include <cstddef>
#include <boost/intrusive/detail/config_begin.hpp>
#include <boost/intrusive/intrusive_fwd.hpp>
#include <boost/intrusive/detail/bstree_algorithms_base.hpp>
#include <boost/intrusive/detail/assert.hpp>
#include <boost/intrusive/detail/uncast.hpp>
#include <boost/intrusive/detail/math.hpp>
#include <boost/intrusive/detail/algo_type.hpp>
#include <boost/intrusive/detail/minimal_pair_header.hpp>
#if defined(BOOST_HAS_PRAGMA_ONCE)
# pragma once
#endif
namespace boost {
namespace intrusive {
/// @cond
//! This type is the information that will be filled by insert_unique_check
template <class NodePtr>
struct insert_commit_data_t
{
bool link_left;
NodePtr node;
};
template <class NodePtr>
struct data_for_rebalance_t
{
NodePtr x;
NodePtr x_parent;
NodePtr y;
};
namespace detail {
template<class ValueTraits, class NodePtrCompare, class ExtraChecker>
struct bstree_node_checker
: public ExtraChecker
{
typedef ExtraChecker base_checker_t;
typedef ValueTraits value_traits;
typedef typename value_traits::node_traits node_traits;
typedef typename node_traits::const_node_ptr const_node_ptr;
struct return_type
: public base_checker_t::return_type
{
return_type() : min_key_node_ptr(const_node_ptr()), max_key_node_ptr(const_node_ptr()), node_count(0) {}
const_node_ptr min_key_node_ptr;
const_node_ptr max_key_node_ptr;
size_t node_count;
};
bstree_node_checker(const NodePtrCompare& comp, ExtraChecker extra_checker)
: base_checker_t(extra_checker), comp_(comp)
{}
void operator () (const const_node_ptr& p,
const return_type& check_return_left, const return_type& check_return_right,
return_type& check_return)
{
if (check_return_left.max_key_node_ptr)
BOOST_INTRUSIVE_INVARIANT_ASSERT(!comp_(p, check_return_left.max_key_node_ptr));
if (check_return_right.min_key_node_ptr)
BOOST_INTRUSIVE_INVARIANT_ASSERT(!comp_(check_return_right.min_key_node_ptr, p));
check_return.min_key_node_ptr = node_traits::get_left(p)? check_return_left.min_key_node_ptr : p;
check_return.max_key_node_ptr = node_traits::get_right(p)? check_return_right.max_key_node_ptr : p;
check_return.node_count = check_return_left.node_count + check_return_right.node_count + 1;
base_checker_t::operator()(p, check_return_left, check_return_right, check_return);
}
const NodePtrCompare comp_;
};
} // namespace detail
/// @endcond
//! This is an implementation of a binary search tree.
//! A node in the search tree has references to its children and its parent. This
//! is to allow traversal of the whole tree from a given node making the
//! implementation of iterator a pointer to a node.
//! At the top of the tree a node is used specially. This node's parent pointer
//! is pointing to the root of the tree. Its left pointer points to the
//! leftmost node in the tree and the right pointer to the rightmost one.
//! This node is used to represent the end-iterator.
//!
//! +---------+
//! header------------------------------>| |
//! | |
//! +----------(left)--------| |--------(right)---------+
//! | +---------+ |
//! | | |
//! | | (parent) |
//! | | |
//! | | |
//! | +---------+ |
//! root of tree ..|......................> | | |
//! | | D | |
//! | | | |
//! | +-------+---------+-------+ |
//! | | | |
//! | | | |
//! | | | |
//! | | | |
//! | | | |
//! | +---------+ +---------+ |
//! | | | | | |
//! | | B | | F | |
//! | | | | | |
//! | +--+---------+--+ +--+---------+--+ |
//! | | | | | |
//! | | | | | |
//! | | | | | |
//! | +---+-----+ +-----+---+ +---+-----+ +-----+---+ |
//! +-->| | | | | | | |<--+
//! | A | | C | | E | | G |
//! | | | | | | | |
//! +---------+ +---------+ +---------+ +---------+
//!
//! bstree_algorithms is configured with a NodeTraits class, which encapsulates the
//! information about the node to be manipulated. NodeTraits must support the
//! following interface:
//!
//! <b>Typedefs</b>:
//!
//! <tt>node</tt>: The type of the node that forms the binary search tree
//!
//! <tt>node_ptr</tt>: A pointer to a node
//!
//! <tt>const_node_ptr</tt>: A pointer to a const node
//!
//! <b>Static functions</b>:
//!
//! <tt>static node_ptr get_parent(const_node_ptr n);</tt>
//!
//! <tt>static void set_parent(node_ptr n, node_ptr parent);</tt>
//!
//! <tt>static node_ptr get_left(const_node_ptr n);</tt>
//!
//! <tt>static void set_left(node_ptr n, node_ptr left);</tt>
//!
//! <tt>static node_ptr get_right(const_node_ptr n);</tt>
//!
//! <tt>static void set_right(node_ptr n, node_ptr right);</tt>
template<class NodeTraits>
class bstree_algorithms : public bstree_algorithms_base<NodeTraits>
{
public:
typedef typename NodeTraits::node node;
typedef NodeTraits node_traits;
typedef typename NodeTraits::node_ptr node_ptr;
typedef typename NodeTraits::const_node_ptr const_node_ptr;
typedef insert_commit_data_t<node_ptr> insert_commit_data;
typedef data_for_rebalance_t<node_ptr> data_for_rebalance;
/// @cond
typedef bstree_algorithms<NodeTraits> this_type;
typedef bstree_algorithms_base<NodeTraits> base_type;
private:
template<class Disposer>
struct dispose_subtree_disposer
{
dispose_subtree_disposer(Disposer &disp, const node_ptr & subtree)
: disposer_(&disp), subtree_(subtree)
{}
void release()
{ disposer_ = 0; }
~dispose_subtree_disposer()
{
if(disposer_){
dispose_subtree(subtree_, *disposer_);
}
}
Disposer *disposer_;
const node_ptr subtree_;
};
/// @endcond
public:
//! <b>Requires</b>: 'header' is the header node of a tree.
//!
//! <b>Effects</b>: Returns the first node of the tree, the header if the tree is empty.
//!
//! <b>Complexity</b>: Constant time.
//!
//! <b>Throws</b>: Nothing.
static node_ptr begin_node(const const_node_ptr & header)
{ return node_traits::get_left(header); }
//! <b>Requires</b>: 'header' is the header node of a tree.
//!
//! <b>Effects</b>: Returns the header of the tree.
//!
//! <b>Complexity</b>: Constant time.
//!
//! <b>Throws</b>: Nothing.
static node_ptr end_node(const const_node_ptr & header)
{ return detail::uncast(header); }
//! <b>Requires</b>: 'header' is the header node of a tree.
//!
//! <b>Effects</b>: Returns the root of the tree if any, header otherwise
//!
//! <b>Complexity</b>: Constant time.
//!
//! <b>Throws</b>: Nothing.
static node_ptr root_node(const const_node_ptr & header)
{
node_ptr p = node_traits::get_parent(header);
return p ? p : detail::uncast(header);
}
//! <b>Requires</b>: 'node' is a node of the tree or a node initialized
//! by init(...) or init_node.
//!
//! <b>Effects</b>: Returns true if the node is initialized by init() or init_node().
//!
//! <b>Complexity</b>: Constant time.
//!
//! <b>Throws</b>: Nothing.
static bool unique(const const_node_ptr & node)
{ return !NodeTraits::get_parent(node); }
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
//! <b>Requires</b>: 'node' is a node of the tree or a header node.
//!
//! <b>Effects</b>: Returns the header of the tree.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
static node_ptr get_header(const const_node_ptr & node);
#endif
//! <b>Requires</b>: node1 and node2 can't be header nodes
//! of two trees.
//!
//! <b>Effects</b>: Swaps two nodes. After the function node1 will be inserted
//! in the position node2 before the function. node2 will be inserted in the
//! position node1 had before the function.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: This function will break container ordering invariants if
//! node1 and node2 are not equivalent according to the ordering rules.
//!
//!Experimental function
static void swap_nodes(const node_ptr & node1, const node_ptr & node2)
{
if(node1 == node2)
return;
node_ptr header1(base_type::get_header(node1)), header2(base_type::get_header(node2));
swap_nodes(node1, header1, node2, header2);
}
//! <b>Requires</b>: node1 and node2 can't be header nodes
//! of two trees with header header1 and header2.
//!
//! <b>Effects</b>: Swaps two nodes. After the function node1 will be inserted
//! in the position node2 before the function. node2 will be inserted in the
//! position node1 had before the function.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: This function will break container ordering invariants if
//! node1 and node2 are not equivalent according to the ordering rules.
//!
//!Experimental function
static void swap_nodes(const node_ptr & node1, const node_ptr & header1, const node_ptr & node2, const node_ptr & header2)
{
if(node1 == node2)
return;
//node1 and node2 must not be header nodes
//BOOST_INTRUSIVE_INVARIANT_ASSERT((header1 != node1 && header2 != node2));
if(header1 != header2){
//Update header1 if necessary
if(node1 == NodeTraits::get_left(header1)){
NodeTraits::set_left(header1, node2);
}
if(node1 == NodeTraits::get_right(header1)){
NodeTraits::set_right(header1, node2);
}
if(node1 == NodeTraits::get_parent(header1)){
NodeTraits::set_parent(header1, node2);
}
//Update header2 if necessary
if(node2 == NodeTraits::get_left(header2)){
NodeTraits::set_left(header2, node1);
}
if(node2 == NodeTraits::get_right(header2)){
NodeTraits::set_right(header2, node1);
}
if(node2 == NodeTraits::get_parent(header2)){
NodeTraits::set_parent(header2, node1);
}
}
else{
//If both nodes are from the same tree
//Update header if necessary
if(node1 == NodeTraits::get_left(header1)){
NodeTraits::set_left(header1, node2);
}
else if(node2 == NodeTraits::get_left(header2)){
NodeTraits::set_left(header2, node1);
}
if(node1 == NodeTraits::get_right(header1)){
NodeTraits::set_right(header1, node2);
}
else if(node2 == NodeTraits::get_right(header2)){
NodeTraits::set_right(header2, node1);
}
if(node1 == NodeTraits::get_parent(header1)){
NodeTraits::set_parent(header1, node2);
}
else if(node2 == NodeTraits::get_parent(header2)){
NodeTraits::set_parent(header2, node1);
}
//Adjust data in nodes to be swapped
//so that final link swap works as expected
if(node1 == NodeTraits::get_parent(node2)){
NodeTraits::set_parent(node2, node2);
if(node2 == NodeTraits::get_right(node1)){
NodeTraits::set_right(node1, node1);
}
else{
NodeTraits::set_left(node1, node1);
}
}
else if(node2 == NodeTraits::get_parent(node1)){
NodeTraits::set_parent(node1, node1);
if(node1 == NodeTraits::get_right(node2)){
NodeTraits::set_right(node2, node2);
}
else{
NodeTraits::set_left(node2, node2);
}
}
}
//Now swap all the links
node_ptr temp;
//swap left link
temp = NodeTraits::get_left(node1);
NodeTraits::set_left(node1, NodeTraits::get_left(node2));
NodeTraits::set_left(node2, temp);
//swap right link
temp = NodeTraits::get_right(node1);
NodeTraits::set_right(node1, NodeTraits::get_right(node2));
NodeTraits::set_right(node2, temp);
//swap parent link
temp = NodeTraits::get_parent(node1);
NodeTraits::set_parent(node1, NodeTraits::get_parent(node2));
NodeTraits::set_parent(node2, temp);
//Now adjust adjacent nodes for newly inserted node 1
if((temp = NodeTraits::get_left(node1))){
NodeTraits::set_parent(temp, node1);
}
if((temp = NodeTraits::get_right(node1))){
NodeTraits::set_parent(temp, node1);
}
if((temp = NodeTraits::get_parent(node1)) &&
//The header has been already updated so avoid it
temp != header2){
if(NodeTraits::get_left(temp) == node2){
NodeTraits::set_left(temp, node1);
}
if(NodeTraits::get_right(temp) == node2){
NodeTraits::set_right(temp, node1);
}
}
//Now adjust adjacent nodes for newly inserted node 2
if((temp = NodeTraits::get_left(node2))){
NodeTraits::set_parent(temp, node2);
}
if((temp = NodeTraits::get_right(node2))){
NodeTraits::set_parent(temp, node2);
}
if((temp = NodeTraits::get_parent(node2)) &&
//The header has been already updated so avoid it
temp != header1){
if(NodeTraits::get_left(temp) == node1){
NodeTraits::set_left(temp, node2);
}
if(NodeTraits::get_right(temp) == node1){
NodeTraits::set_right(temp, node2);
}
}
}
//! <b>Requires</b>: node_to_be_replaced must be inserted in a tree
//! and new_node must not be inserted in a tree.
//!
//! <b>Effects</b>: Replaces node_to_be_replaced in its position in the
//! tree with new_node. The tree does not need to be rebalanced
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: This function will break container ordering invariants if
//! new_node is not equivalent to node_to_be_replaced according to the
//! ordering rules. This function is faster than erasing and inserting
//! the node, since no rebalancing and comparison is needed. Experimental function
static void replace_node(const node_ptr & node_to_be_replaced, const node_ptr & new_node)
{
if(node_to_be_replaced == new_node)
return;
replace_node(node_to_be_replaced, base_type::get_header(node_to_be_replaced), new_node);
}
//! <b>Requires</b>: node_to_be_replaced must be inserted in a tree
//! with header "header" and new_node must not be inserted in a tree.
//!
//! <b>Effects</b>: Replaces node_to_be_replaced in its position in the
//! tree with new_node. The tree does not need to be rebalanced
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: This function will break container ordering invariants if
//! new_node is not equivalent to node_to_be_replaced according to the
//! ordering rules. This function is faster than erasing and inserting
//! the node, since no rebalancing or comparison is needed. Experimental function
static void replace_node(const node_ptr & node_to_be_replaced, const node_ptr & header, const node_ptr & new_node)
{
if(node_to_be_replaced == new_node)
return;
//Update header if necessary
if(node_to_be_replaced == NodeTraits::get_left(header)){
NodeTraits::set_left(header, new_node);
}
if(node_to_be_replaced == NodeTraits::get_right(header)){
NodeTraits::set_right(header, new_node);
}
if(node_to_be_replaced == NodeTraits::get_parent(header)){
NodeTraits::set_parent(header, new_node);
}
//Now set data from the original node
node_ptr temp;
NodeTraits::set_left(new_node, NodeTraits::get_left(node_to_be_replaced));
NodeTraits::set_right(new_node, NodeTraits::get_right(node_to_be_replaced));
NodeTraits::set_parent(new_node, NodeTraits::get_parent(node_to_be_replaced));
//Now adjust adjacent nodes for newly inserted node
if((temp = NodeTraits::get_left(new_node))){
NodeTraits::set_parent(temp, new_node);
}
if((temp = NodeTraits::get_right(new_node))){
NodeTraits::set_parent(temp, new_node);
}
if((temp = NodeTraits::get_parent(new_node)) &&
//The header has been already updated so avoid it
temp != header){
if(NodeTraits::get_left(temp) == node_to_be_replaced){
NodeTraits::set_left(temp, new_node);
}
if(NodeTraits::get_right(temp) == node_to_be_replaced){
NodeTraits::set_right(temp, new_node);
}
}
}
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
//! <b>Requires</b>: 'node' is a node from the tree except the header.
//!
//! <b>Effects</b>: Returns the next node of the tree.
//!
//! <b>Complexity</b>: Average constant time.
//!
//! <b>Throws</b>: Nothing.
static node_ptr next_node(const node_ptr & node);
//! <b>Requires</b>: 'node' is a node from the tree except the leftmost node.
//!
//! <b>Effects</b>: Returns the previous node of the tree.
//!
//! <b>Complexity</b>: Average constant time.
//!
//! <b>Throws</b>: Nothing.
static node_ptr prev_node(const node_ptr & node);
//! <b>Requires</b>: 'node' is a node of a tree but not the header.
//!
//! <b>Effects</b>: Returns the minimum node of the subtree starting at p.
//!
//! <b>Complexity</b>: Logarithmic to the size of the subtree.
//!
//! <b>Throws</b>: Nothing.
static node_ptr minimum(node_ptr node);
//! <b>Requires</b>: 'node' is a node of a tree but not the header.
//!
//! <b>Effects</b>: Returns the maximum node of the subtree starting at p.
//!
//! <b>Complexity</b>: Logarithmic to the size of the subtree.
//!
//! <b>Throws</b>: Nothing.
static node_ptr maximum(node_ptr node);
#endif
//! <b>Requires</b>: 'node' must not be part of any tree.
//!
//! <b>Effects</b>: After the function unique(node) == true.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Nodes</b>: If node is inserted in a tree, this function corrupts the tree.
static void init(const node_ptr & node)
{
NodeTraits::set_parent(node, node_ptr());
NodeTraits::set_left(node, node_ptr());
NodeTraits::set_right(node, node_ptr());
};
//! <b>Effects</b>: Returns true if node is in the same state as if called init(node)
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
static bool inited(const const_node_ptr & node)
{
return !NodeTraits::get_parent(node) &&
!NodeTraits::get_left(node) &&
!NodeTraits::get_right(node) ;
};
//! <b>Requires</b>: node must not be part of any tree.
//!
//! <b>Effects</b>: Initializes the header to represent an empty tree.
//! unique(header) == true.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Nodes</b>: If node is inserted in a tree, this function corrupts the tree.
static void init_header(const node_ptr & header)
{
NodeTraits::set_parent(header, node_ptr());
NodeTraits::set_left(header, header);
NodeTraits::set_right(header, header);
}
//! <b>Requires</b>: "disposer" must be an object function
//! taking a node_ptr parameter and shouldn't throw.
//!
//! <b>Effects</b>: Empties the target tree calling
//! <tt>void disposer::operator()(const node_ptr &)</tt> for every node of the tree
//! except the header.
//!
//! <b>Complexity</b>: Linear to the number of element of the source tree plus the.
//! number of elements of tree target tree when calling this function.
//!
//! <b>Throws</b>: If cloner functor throws. If this happens target nodes are disposed.
template<class Disposer>
static void clear_and_dispose(const node_ptr & header, Disposer disposer)
{
node_ptr source_root = NodeTraits::get_parent(header);
if(!source_root)
return;
dispose_subtree(source_root, disposer);
init_header(header);
}
//! <b>Requires</b>: header is the header of a tree.
//!
//! <b>Effects</b>: Unlinks the leftmost node from the tree, and
//! updates the header link to the new leftmost node.
//!
//! <b>Complexity</b>: Average complexity is constant time.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Notes</b>: This function breaks the tree and the tree can
//! only be used for more unlink_leftmost_without_rebalance calls.
//! This function is normally used to achieve a step by step
//! controlled destruction of the tree.
static node_ptr unlink_leftmost_without_rebalance(const node_ptr & header)
{
node_ptr leftmost = NodeTraits::get_left(header);
if (leftmost == header)
return node_ptr();
node_ptr leftmost_parent(NodeTraits::get_parent(leftmost));
node_ptr leftmost_right (NodeTraits::get_right(leftmost));
bool is_root = leftmost_parent == header;
if (leftmost_right){
NodeTraits::set_parent(leftmost_right, leftmost_parent);
NodeTraits::set_left(header, base_type::minimum(leftmost_right));
if (is_root)
NodeTraits::set_parent(header, leftmost_right);
else
NodeTraits::set_left(NodeTraits::get_parent(header), leftmost_right);
}
else if (is_root){
NodeTraits::set_parent(header, node_ptr());
NodeTraits::set_left(header, header);
NodeTraits::set_right(header, header);
}
else{
NodeTraits::set_left(leftmost_parent, node_ptr());
NodeTraits::set_left(header, leftmost_parent);
}
return leftmost;
}
//! <b>Requires</b>: node is a node of the tree but it's not the header.
//!
//! <b>Effects</b>: Returns the number of nodes of the subtree.
//!
//! <b>Complexity</b>: Linear time.
//!
//! <b>Throws</b>: Nothing.
static std::size_t size(const const_node_ptr & header)
{
node_ptr beg(begin_node(header));
node_ptr end(end_node(header));
std::size_t i = 0;
for(;beg != end; beg = base_type::next_node(beg)) ++i;
return i;
}
//! <b>Requires</b>: header1 and header2 must be the header nodes
//! of two trees.
//!
//! <b>Effects</b>: Swaps two trees. After the function header1 will contain
//! links to the second tree and header2 will have links to the first tree.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
static void swap_tree(const node_ptr & header1, const node_ptr & header2)
{
if(header1 == header2)
return;
node_ptr tmp;
//Parent swap
tmp = NodeTraits::get_parent(header1);
NodeTraits::set_parent(header1, NodeTraits::get_parent(header2));
NodeTraits::set_parent(header2, tmp);
//Left swap
tmp = NodeTraits::get_left(header1);
NodeTraits::set_left(header1, NodeTraits::get_left(header2));
NodeTraits::set_left(header2, tmp);
//Right swap
tmp = NodeTraits::get_right(header1);
NodeTraits::set_right(header1, NodeTraits::get_right(header2));
NodeTraits::set_right(header2, tmp);
//Now test parent
node_ptr h1_parent(NodeTraits::get_parent(header1));
if(h1_parent){
NodeTraits::set_parent(h1_parent, header1);
}
else{
NodeTraits::set_left(header1, header1);
NodeTraits::set_right(header1, header1);
}
node_ptr h2_parent(NodeTraits::get_parent(header2));
if(h2_parent){
NodeTraits::set_parent(h2_parent, header2);
}
else{
NodeTraits::set_left(header2, header2);
NodeTraits::set_right(header2, header2);
}
}
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
//! <b>Requires</b>: p is a node of a tree.
//!
//! <b>Effects</b>: Returns true if p is the header of the tree.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
static bool is_header(const const_node_ptr & p);
#endif
//! <b>Requires</b>: "header" must be the header node of a tree.
//! KeyNodePtrCompare is a function object that induces a strict weak
//! ordering compatible with the strict weak ordering used to create the
//! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
//!
//! <b>Effects</b>: Returns a node_ptr to the first element that is equivalent to
//! "key" according to "comp" or "header" if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If "comp" throws.
template<class KeyType, class KeyNodePtrCompare>
static node_ptr find
(const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp)
{
node_ptr end = detail::uncast(header);
node_ptr y = lower_bound(header, key, comp);
return (y == end || comp(key, y)) ? end : y;
}
//! <b>Requires</b>: "header" must be the header node of a tree.
//! KeyNodePtrCompare is a function object that induces a strict weak
//! ordering compatible with the strict weak ordering used to create the
//! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
//! 'lower_key' must not be greater than 'upper_key' according to 'comp'. If
//! 'lower_key' == 'upper_key', ('left_closed' || 'right_closed') must be true.
//!
//! <b>Effects</b>: Returns an a pair with the following criteria:
//!
//! first = lower_bound(lower_key) if left_closed, upper_bound(lower_key) otherwise
//!
//! second = upper_bound(upper_key) if right_closed, lower_bound(upper_key) otherwise
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If "comp" throws.
//!
//! <b>Note</b>: This function can be more efficient than calling upper_bound
//! and lower_bound for lower_key and upper_key.
//!
//! <b>Note</b>: Experimental function, the interface might change.
template< class KeyType, class KeyNodePtrCompare>
static std::pair<node_ptr, node_ptr> bounded_range
( const const_node_ptr & header
, const KeyType &lower_key
, const KeyType &upper_key
, KeyNodePtrCompare comp
, bool left_closed
, bool right_closed)
{
node_ptr y = detail::uncast(header);
node_ptr x = NodeTraits::get_parent(header);
while(x){
//If x is less than lower_key the target
//range is on the right part
if(comp(x, lower_key)){
//Check for invalid input range
BOOST_INTRUSIVE_INVARIANT_ASSERT(comp(x, upper_key));
x = NodeTraits::get_right(x);
}
//If the upper_key is less than x, the target
//range is on the left part
else if(comp(upper_key, x)){
y = x;
x = NodeTraits::get_left(x);
}
else{
//x is inside the bounded range(lower_key <= x <= upper_key),
//so we must split lower and upper searches
//
//Sanity check: if lower_key and upper_key are equal, then both left_closed and right_closed can't be false
BOOST_INTRUSIVE_INVARIANT_ASSERT(left_closed || right_closed || comp(lower_key, x) || comp(x, upper_key));
return std::pair<node_ptr,node_ptr>(
left_closed
//If left_closed, then comp(x, lower_key) is already the lower_bound
//condition so we save one comparison and go to the next level
//following traditional lower_bound algo
? lower_bound_loop(NodeTraits::get_left(x), x, lower_key, comp)
//If left-open, comp(x, lower_key) is not the upper_bound algo
//condition so we must recheck current 'x' node with upper_bound algo
: upper_bound_loop(x, y, lower_key, comp)
,
right_closed
//If right_closed, then comp(upper_key, x) is already the upper_bound
//condition so we can save one comparison and go to the next level
//following lower_bound algo
? upper_bound_loop(NodeTraits::get_right(x), y, upper_key, comp)
//If right-open, comp(upper_key, x) is not the lower_bound algo
//condition so we must recheck current 'x' node with lower_bound algo
: lower_bound_loop(x, y, upper_key, comp)
);
}
}
return std::pair<node_ptr,node_ptr> (y, y);
}
//! <b>Requires</b>: "header" must be the header node of a tree.
//! KeyNodePtrCompare is a function object that induces a strict weak
//! ordering compatible with the strict weak ordering used to create the
//! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
//!
//! <b>Effects</b>: Returns the number of elements with a key equivalent to "key"
//! according to "comp".
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If "comp" throws.
template<class KeyType, class KeyNodePtrCompare>
static std::size_t count
(const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp)
{
std::pair<node_ptr, node_ptr> ret = equal_range(header, key, comp);
std::size_t n = 0;
while(ret.first != ret.second){
++n;
ret.first = base_type::next_node(ret.first);
}
return n;
}
//! <b>Requires</b>: "header" must be the header node of a tree.
//! KeyNodePtrCompare is a function object that induces a strict weak
//! ordering compatible with the strict weak ordering used to create the
//! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
//!
//! <b>Effects</b>: Returns an a pair of node_ptr delimiting a range containing
//! all elements that are equivalent to "key" according to "comp" or an
//! empty range that indicates the position where those elements would be
//! if there are no equivalent elements.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If "comp" throws.
template<class KeyType, class KeyNodePtrCompare>
static std::pair<node_ptr, node_ptr> equal_range
(const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp)
{
return bounded_range(header, key, key, comp, true, true);
}
//! <b>Requires</b>: "header" must be the header node of a tree.
//! KeyNodePtrCompare is a function object that induces a strict weak
//! ordering compatible with the strict weak ordering used to create the
//! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
//!
//! <b>Effects</b>: Returns an a pair of node_ptr delimiting a range containing
//! the first element that is equivalent to "key" according to "comp" or an
//! empty range that indicates the position where that element would be
//! if there are no equivalent elements.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If "comp" throws.
template<class KeyType, class KeyNodePtrCompare>
static std::pair<node_ptr, node_ptr> lower_bound_range
(const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp)
{
node_ptr const lb(lower_bound(header, key, comp));
std::pair<node_ptr, node_ptr> ret_ii(lb, lb);
if(lb != header && !comp(key, lb)){
ret_ii.second = base_type::next_node(ret_ii.second);
}
return ret_ii;
}
//! <b>Requires</b>: "header" must be the header node of a tree.
//! KeyNodePtrCompare is a function object that induces a strict weak
//! ordering compatible with the strict weak ordering used to create the
//! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
//!
//! <b>Effects</b>: Returns a node_ptr to the first element that is
//! not less than "key" according to "comp" or "header" if that element does
//! not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If "comp" throws.
template<class KeyType, class KeyNodePtrCompare>
static node_ptr lower_bound
(const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp)
{
return lower_bound_loop(NodeTraits::get_parent(header), detail::uncast(header), key, comp);
}
//! <b>Requires</b>: "header" must be the header node of a tree.
//! KeyNodePtrCompare is a function object that induces a strict weak
//! ordering compatible with the strict weak ordering used to create the
//! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
//!
//! <b>Effects</b>: Returns a node_ptr to the first element that is greater
//! than "key" according to "comp" or "header" if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If "comp" throws.
template<class KeyType, class KeyNodePtrCompare>
static node_ptr upper_bound
(const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp)
{
return upper_bound_loop(NodeTraits::get_parent(header), detail::uncast(header), key, comp);
}
//! <b>Requires</b>: "header" must be the header node of a tree.
//! "commit_data" must have been obtained from a previous call to
//! "insert_unique_check". No objects should have been inserted or erased
//! from the set between the "insert_unique_check" that filled "commit_data"
//! and the call to "insert_commit".
//!
//!
//! <b>Effects</b>: Inserts new_node in the set using the information obtained
//! from the "commit_data" that a previous "insert_check" filled.
//!
//! <b>Complexity</b>: Constant time.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Notes</b>: This function has only sense if a "insert_unique_check" has been
//! previously executed to fill "commit_data". No value should be inserted or
//! erased between the "insert_check" and "insert_commit" calls.
static void insert_unique_commit
(const node_ptr & header, const node_ptr & new_value, const insert_commit_data &commit_data)
{ return insert_commit(header, new_value, commit_data); }
//! <b>Requires</b>: "header" must be the header node of a tree.
//! KeyNodePtrCompare is a function object that induces a strict weak
//! ordering compatible with the strict weak ordering used to create the
//! the tree. NodePtrCompare compares KeyType with a node_ptr.
//!
//! <b>Effects</b>: Checks if there is an equivalent node to "key" in the
//! tree according to "comp" and obtains the needed information to realize
//! a constant-time node insertion if there is no equivalent node.
//!
//! <b>Returns</b>: If there is an equivalent value
//! returns a pair containing a node_ptr to the already present node
//! and false. If there is not equivalent key can be inserted returns true
//! in the returned pair's boolean and fills "commit_data" that is meant to
//! be used with the "insert_commit" function to achieve a constant-time
//! insertion function.
//!
//! <b>Complexity</b>: Average complexity is at most logarithmic.
//!
//! <b>Throws</b>: If "comp" throws.
//!
//! <b>Notes</b>: This function is used to improve performance when constructing
//! a node is expensive and the user does not want to have two equivalent nodes
//! in the tree: if there is an equivalent value
//! the constructed object must be discarded. Many times, the part of the
//! node that is used to impose the order is much cheaper to construct
//! than the node and this function offers the possibility to use that part
//! to check if the insertion will be successful.
//!
//! If the check is successful, the user can construct the node and use
//! "insert_commit" to insert the node in constant-time. This gives a total
//! logarithmic complexity to the insertion: check(O(log(N)) + commit(O(1)).
//!
//! "commit_data" remains valid for a subsequent "insert_unique_commit" only
//! if no more objects are inserted or erased from the set.
template<class KeyType, class KeyNodePtrCompare>
static std::pair<node_ptr, bool> insert_unique_check
(const const_node_ptr & header, const KeyType &key
,KeyNodePtrCompare comp, insert_commit_data &commit_data
#ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
, std::size_t *pdepth = 0
#endif
)
{
std::size_t depth = 0;
node_ptr h(detail::uncast(header));
node_ptr y(h);
node_ptr x(NodeTraits::get_parent(y));
node_ptr prev = node_ptr();
//Find the upper bound, cache the previous value and if we should
//store it in the left or right node
bool left_child = true;
while(x){
++depth;
y = x;
x = (left_child = comp(key, x)) ?
NodeTraits::get_left(x) : (prev = y, NodeTraits::get_right(x));
}
if(pdepth) *pdepth = depth;
//Since we've found the upper bound there is no other value with the same key if:
// - There is no previous node
// - The previous node is less than the key
const bool not_present = !prev || comp(prev, key);
if(not_present){
commit_data.link_left = left_child;
commit_data.node = y;
}
return std::pair<node_ptr, bool>(prev, not_present);
}
//! <b>Requires</b>: "header" must be the header node of a tree.
//! KeyNodePtrCompare is a function object that induces a strict weak
//! ordering compatible with the strict weak ordering used to create the
//! the tree. NodePtrCompare compares KeyType with a node_ptr.
//! "hint" is node from the "header"'s tree.
//!
//! <b>Effects</b>: Checks if there is an equivalent node to "key" in the
//! tree according to "comp" using "hint" as a hint to where it should be
//! inserted and obtains the needed information to realize
//! a constant-time node insertion if there is no equivalent node.
//! If "hint" is the upper_bound the function has constant time
//! complexity (two comparisons in the worst case).
//!
//! <b>Returns</b>: If there is an equivalent value
//! returns a pair containing a node_ptr to the already present node
//! and false. If there is not equivalent key can be inserted returns true
//! in the returned pair's boolean and fills "commit_data" that is meant to
//! be used with the "insert_commit" function to achieve a constant-time
//! insertion function.
//!
//! <b>Complexity</b>: Average complexity is at most logarithmic, but it is
//! amortized constant time if new_node should be inserted immediately before "hint".
//!
//! <b>Throws</b>: If "comp" throws.
//!
//! <b>Notes</b>: This function is used to improve performance when constructing
//! a node is expensive and the user does not want to have two equivalent nodes
//! in the tree: if there is an equivalent value
//! the constructed object must be discarded. Many times, the part of the
//! node that is used to impose the order is much cheaper to construct
//! than the node and this function offers the possibility to use that part
//! to check if the insertion will be successful.
//!
//! If the check is successful, the user can construct the node and use
//! "insert_commit" to insert the node in constant-time. This gives a total
//! logarithmic complexity to the insertion: check(O(log(N)) + commit(O(1)).
//!
//! "commit_data" remains valid for a subsequent "insert_unique_commit" only
//! if no more objects are inserted or erased from the set.
template<class KeyType, class KeyNodePtrCompare>
static std::pair<node_ptr, bool> insert_unique_check
(const const_node_ptr & header, const node_ptr &hint, const KeyType &key
,KeyNodePtrCompare comp, insert_commit_data &commit_data
#ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
, std::size_t *pdepth = 0
#endif
)
{
//hint must be bigger than the key
if(hint == header || comp(key, hint)){
node_ptr prev(hint);
//Previous value should be less than the key
if(hint == begin_node(header) || comp((prev = base_type::prev_node(hint)), key)){
commit_data.link_left = unique(header) || !NodeTraits::get_left(hint);
commit_data.node = commit_data.link_left ? hint : prev;
if(pdepth){
*pdepth = commit_data.node == header ? 0 : depth(commit_data.node) + 1;
}
return std::pair<node_ptr, bool>(node_ptr(), true);
}
}
//Hint was wrong, use hintless insertion
return insert_unique_check(header, key, comp, commit_data, pdepth);
}
//! <b>Requires</b>: "header" must be the header node of a tree.
//! NodePtrCompare is a function object that induces a strict weak
//! ordering compatible with the strict weak ordering used to create the
//! the tree. NodePtrCompare compares two node_ptrs. "hint" is node from
//! the "header"'s tree.
//!
//! <b>Effects</b>: Inserts new_node into the tree, using "hint" as a hint to
//! where it will be inserted. If "hint" is the upper_bound
//! the insertion takes constant time (two comparisons in the worst case).
//!
//! <b>Complexity</b>: Logarithmic in general, but it is amortized
//! constant time if new_node is inserted immediately before "hint".
//!
//! <b>Throws</b>: If "comp" throws.
template<class NodePtrCompare>
static node_ptr insert_equal
(const node_ptr & h, const node_ptr & hint, const node_ptr & new_node, NodePtrCompare comp
#ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
, std::size_t *pdepth = 0
#endif
)
{
insert_commit_data commit_data;
insert_equal_check(h, hint, new_node, comp, commit_data, pdepth);
insert_commit(h, new_node, commit_data);
return new_node;
}
//! <b>Requires</b>: "h" must be the header node of a tree.
//! NodePtrCompare is a function object that induces a strict weak
//! ordering compatible with the strict weak ordering used to create the
//! the tree. NodePtrCompare compares two node_ptrs.
//!
//! <b>Effects</b>: Inserts new_node into the tree before the upper bound
//! according to "comp".
//!
//! <b>Complexity</b>: Average complexity for insert element is at
//! most logarithmic.
//!
//! <b>Throws</b>: If "comp" throws.
template<class NodePtrCompare>
static node_ptr insert_equal_upper_bound
(const node_ptr & h, const node_ptr & new_node, NodePtrCompare comp
#ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
, std::size_t *pdepth = 0
#endif
)
{
insert_commit_data commit_data;
insert_equal_upper_bound_check(h, new_node, comp, commit_data, pdepth);
insert_commit(h, new_node, commit_data);
return new_node;
}
//! <b>Requires</b>: "h" must be the header node of a tree.
//! NodePtrCompare is a function object that induces a strict weak
//! ordering compatible with the strict weak ordering used to create the
//! the tree. NodePtrCompare compares two node_ptrs.
//!
//! <b>Effects</b>: Inserts new_node into the tree before the lower bound
//! according to "comp".
//!
//! <b>Complexity</b>: Average complexity for insert element is at
//! most logarithmic.
//!
//! <b>Throws</b>: If "comp" throws.
template<class NodePtrCompare>
static node_ptr insert_equal_lower_bound
(const node_ptr & h, const node_ptr & new_node, NodePtrCompare comp
#ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
, std::size_t *pdepth = 0
#endif
)
{
insert_commit_data commit_data;
insert_equal_lower_bound_check(h, new_node, comp, commit_data, pdepth);
insert_commit(h, new_node, commit_data);
return new_node;
}
//! <b>Requires</b>: "header" must be the header node of a tree.
//! "pos" must be a valid iterator or header (end) node.
//! "pos" must be an iterator pointing to the successor to "new_node"
//! once inserted according to the order of already inserted nodes. This function does not
//! check "pos" and this precondition must be guaranteed by the caller.
//!
//! <b>Effects</b>: Inserts new_node into the tree before "pos".
//!
//! <b>Complexity</b>: Constant-time.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: If "pos" is not the successor of the newly inserted "new_node"
//! tree invariants might be broken.
static node_ptr insert_before
(const node_ptr & header, const node_ptr & pos, const node_ptr & new_node
#ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
, std::size_t *pdepth = 0
#endif
)
{
insert_commit_data commit_data;
insert_before_check(header, pos, commit_data, pdepth);
insert_commit(header, new_node, commit_data);
return new_node;
}
//! <b>Requires</b>: "header" must be the header node of a tree.
//! "new_node" must be, according to the used ordering no less than the
//! greatest inserted key.
//!
//! <b>Effects</b>: Inserts new_node into the tree before "pos".
//!
//! <b>Complexity</b>: Constant-time.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: If "new_node" is less than the greatest inserted key
//! tree invariants are broken. This function is slightly faster than
//! using "insert_before".
static void push_back
(const node_ptr & header, const node_ptr & new_node
#ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
, std::size_t *pdepth = 0
#endif
)
{
insert_commit_data commit_data;
push_back_check(header, commit_data, pdepth);
insert_commit(header, new_node, commit_data);
}
//! <b>Requires</b>: "header" must be the header node of a tree.
//! "new_node" must be, according to the used ordering, no greater than the
//! lowest inserted key.
//!
//! <b>Effects</b>: Inserts new_node into the tree before "pos".
//!
//! <b>Complexity</b>: Constant-time.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: If "new_node" is greater than the lowest inserted key
//! tree invariants are broken. This function is slightly faster than
//! using "insert_before".
static void push_front
(const node_ptr & header, const node_ptr & new_node
#ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
, std::size_t *pdepth = 0
#endif
)
{
insert_commit_data commit_data;
push_front_check(header, commit_data, pdepth);
insert_commit(header, new_node, commit_data);
}
//! <b>Requires</b>: 'node' can't be a header node.
//!
//! <b>Effects</b>: Calculates the depth of a node: the depth of a
//! node is the length (number of edges) of the path from the root
//! to that node. (The root node is at depth 0.)
//!
//! <b>Complexity</b>: Logarithmic to the number of nodes in the tree.
//!
//! <b>Throws</b>: Nothing.
static std::size_t depth(const_node_ptr node)
{
std::size_t depth = 0;
node_ptr p_parent;
while(node != NodeTraits::get_parent(p_parent = NodeTraits::get_parent(node))){
++depth;
node = p_parent;
}
return depth;
}
//! <b>Requires</b>: "cloner" must be a function
//! object taking a node_ptr and returning a new cloned node of it. "disposer" must
//! take a node_ptr and shouldn't throw.
//!
//! <b>Effects</b>: First empties target tree calling
//! <tt>void disposer::operator()(const node_ptr &)</tt> for every node of the tree
//! except the header.
//!
//! Then, duplicates the entire tree pointed by "source_header" cloning each
//! source node with <tt>node_ptr Cloner::operator()(const node_ptr &)</tt> to obtain
//! the nodes of the target tree. If "cloner" throws, the cloned target nodes
//! are disposed using <tt>void disposer(const node_ptr &)</tt>.
//!
//! <b>Complexity</b>: Linear to the number of element of the source tree plus the
//! number of elements of tree target tree when calling this function.
//!
//! <b>Throws</b>: If cloner functor throws. If this happens target nodes are disposed.
template <class Cloner, class Disposer>
static void clone
(const const_node_ptr & source_header, const node_ptr & target_header, Cloner cloner, Disposer disposer)
{
if(!unique(target_header)){
clear_and_dispose(target_header, disposer);
}
node_ptr leftmost, rightmost;
node_ptr new_root = clone_subtree
(source_header, target_header, cloner, disposer, leftmost, rightmost);
//Now update header node
NodeTraits::set_parent(target_header, new_root);
NodeTraits::set_left (target_header, leftmost);
NodeTraits::set_right (target_header, rightmost);
}
//! <b>Requires</b>: header must be the header of a tree, z a node
//! of that tree and z != header.
//!
//! <b>Effects</b>: Erases node "z" from the tree with header "header".
//!
//! <b>Complexity</b>: Amortized constant time.
//!
//! <b>Throws</b>: Nothing.
static void erase(const node_ptr & header, const node_ptr & z)
{
data_for_rebalance ignored;
erase(header, z, ignored);
}
//! <b>Requires</b>: node is a tree node but not the header.
//!
//! <b>Effects</b>: Unlinks the node and rebalances the tree.
//!
//! <b>Complexity</b>: Average complexity is constant time.
//!
//! <b>Throws</b>: Nothing.
static void unlink(const node_ptr & node)
{
node_ptr x = NodeTraits::get_parent(node);
if(x){
while(!base_type::is_header(x))
x = NodeTraits::get_parent(x);
erase(x, node);
}
}
//! <b>Requires</b>: header must be the header of a tree.
//!
//! <b>Effects</b>: Rebalances the tree.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear.
static void rebalance(const node_ptr & header)
{
node_ptr root = NodeTraits::get_parent(header);
if(root){
rebalance_subtree(root);
}
}
//! <b>Requires</b>: old_root is a node of a tree. It shall not be null.
//!
//! <b>Effects</b>: Rebalances the subtree rooted at old_root.
//!
//! <b>Returns</b>: The new root of the subtree.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear.
static node_ptr rebalance_subtree(const node_ptr & old_root)
{
//Taken from:
//"Tree rebalancing in optimal time and space"
//Quentin F. Stout and Bette L. Warren
//To avoid irregularities in the algorithm (old_root can be a
//left or right child or even the root of the tree) just put the
//root as the right child of its parent. Before doing this backup
//information to restore the original relationship after
//the algorithm is applied.
node_ptr super_root = NodeTraits::get_parent(old_root);
BOOST_INTRUSIVE_INVARIANT_ASSERT(super_root);
//Get root info
node_ptr super_root_right_backup = NodeTraits::get_right(super_root);
bool super_root_is_header = NodeTraits::get_parent(super_root) == old_root;
bool old_root_is_right = is_right_child(old_root);
NodeTraits::set_right(super_root, old_root);
std::size_t size;
subtree_to_vine(super_root, size);
vine_to_subtree(super_root, size);
node_ptr new_root = NodeTraits::get_right(super_root);
//Recover root
if(super_root_is_header){
NodeTraits::set_right(super_root, super_root_right_backup);
NodeTraits::set_parent(super_root, new_root);
}
else if(old_root_is_right){
NodeTraits::set_right(super_root, new_root);
}
else{
NodeTraits::set_right(super_root, super_root_right_backup);
NodeTraits::set_left(super_root, new_root);
}
return new_root;
}
//! <b>Effects</b>: Asserts the integrity of the container with additional checks provided by the user.
//!
//! <b>Requires</b>: header must be the header of a tree.
//!
//! <b>Complexity</b>: Linear time.
//!
//! <b>Note</b>: The method might not have effect when asserts are turned off (e.g., with NDEBUG).
//! Experimental function, interface might change in future versions.
template<class Checker>
static void check(const const_node_ptr& header, Checker checker, typename Checker::return_type& checker_return)
{
const_node_ptr root_node_ptr = NodeTraits::get_parent(header);
if (!root_node_ptr){
// check left&right header pointers
BOOST_INTRUSIVE_INVARIANT_ASSERT(NodeTraits::get_left(header) == header);
BOOST_INTRUSIVE_INVARIANT_ASSERT(NodeTraits::get_right(header) == header);
}
else{
// check parent pointer of root node
BOOST_INTRUSIVE_INVARIANT_ASSERT(NodeTraits::get_parent(root_node_ptr) == header);
// check subtree from root
check_subtree(root_node_ptr, checker, checker_return);
// check left&right header pointers
const_node_ptr p = root_node_ptr;
while (NodeTraits::get_left(p)) { p = NodeTraits::get_left(p); }
BOOST_INTRUSIVE_INVARIANT_ASSERT(NodeTraits::get_left(header) == p);
p = root_node_ptr;
while (NodeTraits::get_right(p)) { p = NodeTraits::get_right(p); }
BOOST_INTRUSIVE_INVARIANT_ASSERT(NodeTraits::get_right(header) == p);
}
}
protected:
static void erase(const node_ptr & header, const node_ptr & z, data_for_rebalance &info)
{
node_ptr y(z);
node_ptr x;
const node_ptr z_left(NodeTraits::get_left(z));
const node_ptr z_right(NodeTraits::get_right(z));
if(!z_left){
x = z_right; // x might be null.
}
else if(!z_right){ // z has exactly one non-null child. y == z.
x = z_left; // x is not null.
BOOST_ASSERT(x);
}
else{ //make y != z
// y = find z's successor
y = base_type::minimum(z_right);
x = NodeTraits::get_right(y); // x might be null.
}
node_ptr x_parent;
const node_ptr z_parent(NodeTraits::get_parent(z));
const bool z_is_leftchild(NodeTraits::get_left(z_parent) == z);
if(y != z){ //has two children and y is the minimum of z
//y is z's successor and it has a null left child.
//x is the right child of y (it can be null)
//Relink y in place of z and link x with y's old parent
NodeTraits::set_parent(z_left, y);
NodeTraits::set_left(y, z_left);
if(y != z_right){
//Link y with the right tree of z
NodeTraits::set_right(y, z_right);
NodeTraits::set_parent(z_right, y);
//Link x with y's old parent (y must be a left child)
x_parent = NodeTraits::get_parent(y);
BOOST_ASSERT(NodeTraits::get_left(x_parent) == y);
if(x)
NodeTraits::set_parent(x, x_parent);
//Since y was the successor and not the right child of z, it must be a left child
NodeTraits::set_left(x_parent, x);
}
else{ //y was the right child of y so no need to fix x's position
x_parent = y;
}
NodeTraits::set_parent(y, z_parent);
this_type::set_child(header, y, z_parent, z_is_leftchild);
}
else { // z has zero or one child, x is one child (it can be null)
//Just link x to z's parent
x_parent = z_parent;
if(x)
NodeTraits::set_parent(x, z_parent);
this_type::set_child(header, x, z_parent, z_is_leftchild);
//Now update leftmost/rightmost in case z was one of them
if(NodeTraits::get_left(header) == z){
//z_left must be null because z is the leftmost
BOOST_ASSERT(!z_left);
NodeTraits::set_left(header, !z_right ?
z_parent : // makes leftmost == header if z == root
base_type::minimum(z_right));
}
if(NodeTraits::get_right(header) == z){
//z_right must be null because z is the rightmost
BOOST_ASSERT(!z_right);
NodeTraits::set_right(header, !z_left ?
z_parent : // makes rightmost == header if z == root
base_type::maximum(z_left));
}
}
//If z had 0/1 child, y == z and one of its children (and maybe null)
//If z had 2 children, y is the successor of z and x is the right child of y
info.x = x;
info.y = y;
//If z had 0/1 child, x_parent is the new parent of the old right child of y (z's successor)
//If z had 2 children, x_parent is the new parent of y (z_parent)
BOOST_ASSERT(!x || NodeTraits::get_parent(x) == x_parent);
info.x_parent = x_parent;
}
//! <b>Requires</b>: node is a node of the tree but it's not the header.
//!
//! <b>Effects</b>: Returns the number of nodes of the subtree.
//!
//! <b>Complexity</b>: Linear time.
//!
//! <b>Throws</b>: Nothing.
static std::size_t subtree_size(const const_node_ptr & subtree)
{
std::size_t count = 0;
if (subtree){
node_ptr n = detail::uncast(subtree);
node_ptr m = NodeTraits::get_left(n);
while(m){
n = m;
m = NodeTraits::get_left(n);
}
while(1){
++count;
node_ptr n_right(NodeTraits::get_right(n));
if(n_right){
n = n_right;
m = NodeTraits::get_left(n);
while(m){
n = m;
m = NodeTraits::get_left(n);
}
}
else {
do{
if (n == subtree){
return count;
}
m = n;
n = NodeTraits::get_parent(n);
}while(NodeTraits::get_left(n) != m);
}
}
}
return count;
}
//! <b>Requires</b>: p is a node of a tree.
//!
//! <b>Effects</b>: Returns true if p is a left child.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
static bool is_left_child(const node_ptr & p)
{ return NodeTraits::get_left(NodeTraits::get_parent(p)) == p; }
//! <b>Requires</b>: p is a node of a tree.
//!
//! <b>Effects</b>: Returns true if p is a right child.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
static bool is_right_child(const node_ptr & p)
{ return NodeTraits::get_right(NodeTraits::get_parent(p)) == p; }
static void insert_before_check
(const node_ptr &header, const node_ptr & pos
, insert_commit_data &commit_data
#ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
, std::size_t *pdepth = 0
#endif
)
{
node_ptr prev(pos);
if(pos != NodeTraits::get_left(header))
prev = base_type::prev_node(pos);
bool link_left = unique(header) || !NodeTraits::get_left(pos);
commit_data.link_left = link_left;
commit_data.node = link_left ? pos : prev;
if(pdepth){
*pdepth = commit_data.node == header ? 0 : depth(commit_data.node) + 1;
}
}
static void push_back_check
(const node_ptr & header, insert_commit_data &commit_data
#ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
, std::size_t *pdepth = 0
#endif
)
{
node_ptr prev(NodeTraits::get_right(header));
if(pdepth){
*pdepth = prev == header ? 0 : depth(prev) + 1;
}
commit_data.link_left = false;
commit_data.node = prev;
}
static void push_front_check
(const node_ptr & header, insert_commit_data &commit_data
#ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
, std::size_t *pdepth = 0
#endif
)
{
node_ptr pos(NodeTraits::get_left(header));
if(pdepth){
*pdepth = pos == header ? 0 : depth(pos) + 1;
}
commit_data.link_left = true;
commit_data.node = pos;
}
template<class NodePtrCompare>
static void insert_equal_check
(const node_ptr &header, const node_ptr & hint, const node_ptr & new_node, NodePtrCompare comp
, insert_commit_data &commit_data
/// @cond
, std::size_t *pdepth = 0
/// @endcond
)
{
if(hint == header || !comp(hint, new_node)){
node_ptr prev(hint);
if(hint == NodeTraits::get_left(header) ||
!comp(new_node, (prev = base_type::prev_node(hint)))){
bool link_left = unique(header) || !NodeTraits::get_left(hint);
commit_data.link_left = link_left;
commit_data.node = link_left ? hint : prev;
if(pdepth){
*pdepth = commit_data.node == header ? 0 : depth(commit_data.node) + 1;
}
}
else{
insert_equal_upper_bound_check(header, new_node, comp, commit_data, pdepth);
}
}
else{
insert_equal_lower_bound_check(header, new_node, comp, commit_data, pdepth);
}
}
template<class NodePtrCompare>
static void insert_equal_upper_bound_check
(const node_ptr & h, const node_ptr & new_node, NodePtrCompare comp, insert_commit_data & commit_data, std::size_t *pdepth = 0)
{
std::size_t depth = 0;
node_ptr y(h);
node_ptr x(NodeTraits::get_parent(y));
while(x){
++depth;
y = x;
x = comp(new_node, x) ?
NodeTraits::get_left(x) : NodeTraits::get_right(x);
}
if(pdepth) *pdepth = depth;
commit_data.link_left = (y == h) || comp(new_node, y);
commit_data.node = y;
}
template<class NodePtrCompare>
static void insert_equal_lower_bound_check
(const node_ptr & h, const node_ptr & new_node, NodePtrCompare comp, insert_commit_data & commit_data, std::size_t *pdepth = 0)
{
std::size_t depth = 0;
node_ptr y(h);
node_ptr x(NodeTraits::get_parent(y));
while(x){
++depth;
y = x;
x = !comp(x, new_node) ?
NodeTraits::get_left(x) : NodeTraits::get_right(x);
}
if(pdepth) *pdepth = depth;
commit_data.link_left = (y == h) || !comp(y, new_node);
commit_data.node = y;
}
static void insert_commit
(const node_ptr & header, const node_ptr & new_node, const insert_commit_data &commit_data)
{
//Check if commit_data has not been initialized by a insert_unique_check call.
BOOST_INTRUSIVE_INVARIANT_ASSERT(commit_data.node != node_ptr());
node_ptr parent_node(commit_data.node);
if(parent_node == header){
NodeTraits::set_parent(header, new_node);
NodeTraits::set_right(header, new_node);
NodeTraits::set_left(header, new_node);
}
else if(commit_data.link_left){
NodeTraits::set_left(parent_node, new_node);
if(parent_node == NodeTraits::get_left(header))
NodeTraits::set_left(header, new_node);
}
else{
NodeTraits::set_right(parent_node, new_node);
if(parent_node == NodeTraits::get_right(header))
NodeTraits::set_right(header, new_node);
}
NodeTraits::set_parent(new_node, parent_node);
NodeTraits::set_right(new_node, node_ptr());
NodeTraits::set_left(new_node, node_ptr());
}
//Fix header and own's parent data when replacing x with own, providing own's old data with parent
static void set_child(const node_ptr & header, const node_ptr & new_child, const node_ptr & new_parent, const bool link_left)
{
if(new_parent == header)
NodeTraits::set_parent(header, new_child);
else if(link_left)
NodeTraits::set_left(new_parent, new_child);
else
NodeTraits::set_right(new_parent, new_child);
}
// rotate p to left (no header and p's parent fixup)
static void rotate_left_no_parent_fix(const node_ptr & p, const node_ptr &p_right)
{
node_ptr p_right_left(NodeTraits::get_left(p_right));
NodeTraits::set_right(p, p_right_left);
if(p_right_left){
NodeTraits::set_parent(p_right_left, p);
}
NodeTraits::set_left(p_right, p);
NodeTraits::set_parent(p, p_right);
}
// rotate p to left (with header and p's parent fixup)
static void rotate_left(const node_ptr & p, const node_ptr & p_right, const node_ptr & p_parent, const node_ptr & header)
{
const bool p_was_left(NodeTraits::get_left(p_parent) == p);
rotate_left_no_parent_fix(p, p_right);
NodeTraits::set_parent(p_right, p_parent);
set_child(header, p_right, p_parent, p_was_left);
}
// rotate p to right (no header and p's parent fixup)
static void rotate_right_no_parent_fix(const node_ptr & p, const node_ptr &p_left)
{
node_ptr p_left_right(NodeTraits::get_right(p_left));
NodeTraits::set_left(p, p_left_right);
if(p_left_right){
NodeTraits::set_parent(p_left_right, p);
}
NodeTraits::set_right(p_left, p);
NodeTraits::set_parent(p, p_left);
}
// rotate p to right (with header and p's parent fixup)
static void rotate_right(const node_ptr & p, const node_ptr & p_left, const node_ptr & p_parent, const node_ptr & header)
{
const bool p_was_left(NodeTraits::get_left(p_parent) == p);
rotate_right_no_parent_fix(p, p_left);
NodeTraits::set_parent(p_left, p_parent);
set_child(header, p_left, p_parent, p_was_left);
}
private:
static void subtree_to_vine(node_ptr vine_tail, std::size_t &size)
{
//Inspired by LibAVL:
//It uses a clever optimization for trees with parent pointers.
//No parent pointer is updated when transforming a tree to a vine as
//most of them will be overriten during compression rotations.
//A final pass must be made after the rebalancing to updated those
//pointers not updated by tree_to_vine + compression calls
std::size_t len = 0;
node_ptr remainder = NodeTraits::get_right(vine_tail);
while(remainder){
node_ptr tempptr = NodeTraits::get_left(remainder);
if(!tempptr){ //move vine-tail down one
vine_tail = remainder;
remainder = NodeTraits::get_right(remainder);
++len;
}
else{ //rotate
NodeTraits::set_left(remainder, NodeTraits::get_right(tempptr));
NodeTraits::set_right(tempptr, remainder);
remainder = tempptr;
NodeTraits::set_right(vine_tail, tempptr);
}
}
size = len;
}
static void compress_subtree(node_ptr scanner, std::size_t count)
{
while(count--){ //compress "count" spine nodes in the tree with pseudo-root scanner
node_ptr child = NodeTraits::get_right(scanner);
node_ptr child_right = NodeTraits::get_right(child);
NodeTraits::set_right(scanner, child_right);
//Avoid setting the parent of child_right
scanner = child_right;
node_ptr scanner_left = NodeTraits::get_left(scanner);
NodeTraits::set_right(child, scanner_left);
if(scanner_left)
NodeTraits::set_parent(scanner_left, child);
NodeTraits::set_left(scanner, child);
NodeTraits::set_parent(child, scanner);
}
}
static void vine_to_subtree(const node_ptr & super_root, std::size_t count)
{
const std::size_t one_szt = 1u;
std::size_t leaf_nodes = count + one_szt - std::size_t(one_szt << detail::floor_log2(count + one_szt));
compress_subtree(super_root, leaf_nodes); //create deepest leaves
std::size_t vine_nodes = count - leaf_nodes;
while(vine_nodes > 1){
vine_nodes /= 2;
compress_subtree(super_root, vine_nodes);
}
//Update parents of nodes still in the in the original vine line
//as those have not been updated by subtree_to_vine or compress_subtree
for ( node_ptr q = super_root, p = NodeTraits::get_right(super_root)
; p
; q = p, p = NodeTraits::get_right(p)){
NodeTraits::set_parent(p, q);
}
}
//! <b>Requires</b>: "n" must be a node inserted in a tree.
//!
//! <b>Effects</b>: Returns a pointer to the header node of the tree.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
static node_ptr get_root(const node_ptr & node)
{
BOOST_INTRUSIVE_INVARIANT_ASSERT((!inited(node)));
node_ptr x = NodeTraits::get_parent(node);
if(x){
while(!base_type::is_header(x)){
x = NodeTraits::get_parent(x);
}
return x;
}
else{
return node;
}
}
template <class Cloner, class Disposer>
static node_ptr clone_subtree
(const const_node_ptr &source_parent, const node_ptr &target_parent
, Cloner cloner, Disposer disposer
, node_ptr &leftmost_out, node_ptr &rightmost_out
)
{
node_ptr target_sub_root = target_parent;
node_ptr source_root = NodeTraits::get_parent(source_parent);
if(!source_root){
leftmost_out = rightmost_out = source_root;
}
else{
//We'll calculate leftmost and rightmost nodes while iterating
node_ptr current = source_root;
node_ptr insertion_point = target_sub_root = cloner(current);
//We'll calculate leftmost and rightmost nodes while iterating
node_ptr leftmost = target_sub_root;
node_ptr rightmost = target_sub_root;
//First set the subroot
NodeTraits::set_left(target_sub_root, node_ptr());
NodeTraits::set_right(target_sub_root, node_ptr());
NodeTraits::set_parent(target_sub_root, target_parent);
dispose_subtree_disposer<Disposer> rollback(disposer, target_sub_root);
while(true) {
//First clone left nodes
if( NodeTraits::get_left(current) &&
!NodeTraits::get_left(insertion_point)) {
current = NodeTraits::get_left(current);
node_ptr temp = insertion_point;
//Clone and mark as leaf
insertion_point = cloner(current);
NodeTraits::set_left (insertion_point, node_ptr());
NodeTraits::set_right (insertion_point, node_ptr());
//Insert left
NodeTraits::set_parent(insertion_point, temp);
NodeTraits::set_left (temp, insertion_point);
//Update leftmost
if(rightmost == target_sub_root)
leftmost = insertion_point;
}
//Then clone right nodes
else if( NodeTraits::get_right(current) &&
!NodeTraits::get_right(insertion_point)){
current = NodeTraits::get_right(current);
node_ptr temp = insertion_point;
//Clone and mark as leaf
insertion_point = cloner(current);
NodeTraits::set_left (insertion_point, node_ptr());
NodeTraits::set_right (insertion_point, node_ptr());
//Insert right
NodeTraits::set_parent(insertion_point, temp);
NodeTraits::set_right (temp, insertion_point);
//Update rightmost
rightmost = insertion_point;
}
//If not, go up
else if(current == source_root){
break;
}
else{
//Branch completed, go up searching more nodes to clone
current = NodeTraits::get_parent(current);
insertion_point = NodeTraits::get_parent(insertion_point);
}
}
rollback.release();
leftmost_out = leftmost;
rightmost_out = rightmost;
}
return target_sub_root;
}
template<class Disposer>
static void dispose_subtree(node_ptr x, Disposer disposer)
{
while (x){
node_ptr save(NodeTraits::get_left(x));
if (save) {
// Right rotation
NodeTraits::set_left(x, NodeTraits::get_right(save));
NodeTraits::set_right(save, x);
}
else {
save = NodeTraits::get_right(x);
init(x);
disposer(x);
}
x = save;
}
}
template<class KeyType, class KeyNodePtrCompare>
static node_ptr lower_bound_loop
(node_ptr x, node_ptr y, const KeyType &key, KeyNodePtrCompare comp)
{
while(x){
if(comp(x, key)){
x = NodeTraits::get_right(x);
}
else{
y = x;
x = NodeTraits::get_left(x);
}
}
return y;
}
template<class KeyType, class KeyNodePtrCompare>
static node_ptr upper_bound_loop
(node_ptr x, node_ptr y, const KeyType &key, KeyNodePtrCompare comp)
{
while(x){
if(comp(key, x)){
y = x;
x = NodeTraits::get_left(x);
}
else{
x = NodeTraits::get_right(x);
}
}
return y;
}
template<class Checker>
static void check_subtree(const const_node_ptr& node, Checker checker, typename Checker::return_type& check_return)
{
const_node_ptr left = NodeTraits::get_left(node);
const_node_ptr right = NodeTraits::get_right(node);
typename Checker::return_type check_return_left;
typename Checker::return_type check_return_right;
if (left)
{
BOOST_INTRUSIVE_INVARIANT_ASSERT(NodeTraits::get_parent(left) == node);
check_subtree(left, checker, check_return_left);
}
if (right)
{
BOOST_INTRUSIVE_INVARIANT_ASSERT(NodeTraits::get_parent(right) == node);
check_subtree(right, checker, check_return_right);
}
checker(node, check_return_left, check_return_right, check_return);
}
};
/// @cond
template<class NodeTraits>
struct get_algo<BsTreeAlgorithms, NodeTraits>
{
typedef bstree_algorithms<NodeTraits> type;
};
template <class ValueTraits, class NodePtrCompare, class ExtraChecker>
struct get_node_checker<BsTreeAlgorithms, ValueTraits, NodePtrCompare, ExtraChecker>
{
typedef detail::bstree_node_checker<ValueTraits, NodePtrCompare, ExtraChecker> type;
};
/// @endcond
} //namespace intrusive
} //namespace boost
#include <boost/intrusive/detail/config_end.hpp>
#endif //BOOST_INTRUSIVE_BSTREE_ALGORITHMS_HPP