boost/intrusive/list.hpp
/////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Olaf Krzikalla 2004-2006.
// (C) Copyright Ion Gaztanaga 2006-2014
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/intrusive for documentation.
//
/////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_INTRUSIVE_LIST_HPP
#define BOOST_INTRUSIVE_LIST_HPP
#include <boost/intrusive/detail/config_begin.hpp>
#include <boost/intrusive/intrusive_fwd.hpp>
#include <boost/intrusive/detail/assert.hpp>
#include <boost/intrusive/list_hook.hpp>
#include <boost/intrusive/circular_list_algorithms.hpp>
#include <boost/intrusive/pointer_traits.hpp>
#include <boost/intrusive/detail/mpl.hpp>
#include <boost/intrusive/link_mode.hpp>
#include <boost/intrusive/detail/get_value_traits.hpp>
#include <boost/intrusive/detail/is_stateful_value_traits.hpp>
#include <boost/intrusive/detail/default_header_holder.hpp>
#include <boost/intrusive/detail/reverse_iterator.hpp>
#include <boost/intrusive/detail/uncast.hpp>
#include <boost/intrusive/detail/list_iterator.hpp>
#include <boost/intrusive/detail/array_initializer.hpp>
#include <boost/intrusive/detail/exception_disposer.hpp>
#include <boost/intrusive/detail/equal_to_value.hpp>
#include <boost/intrusive/detail/key_nodeptr_comp.hpp>
#include <boost/intrusive/detail/simple_disposers.hpp>
#include <boost/intrusive/detail/size_holder.hpp>
#include <boost/intrusive/detail/algorithm.hpp>
#include <boost/move/utility_core.hpp>
#include <boost/static_assert.hpp>
#include <boost/intrusive/detail/minimal_less_equal_header.hpp>//std::less
#include <cstddef> //std::size_t, etc.
#if defined(BOOST_HAS_PRAGMA_ONCE)
# pragma once
#endif
namespace boost {
namespace intrusive {
/// @cond
struct default_list_hook_applier
{ template <class T> struct apply{ typedef typename T::default_list_hook type; }; };
template<>
struct is_default_hook_tag<default_list_hook_applier>
{ static const bool value = true; };
struct list_defaults
{
typedef default_list_hook_applier proto_value_traits;
static const bool constant_time_size = true;
typedef std::size_t size_type;
typedef void header_holder_type;
};
/// @endcond
//! The class template list is an intrusive container that mimics most of the
//! interface of std::list as described in the C++ standard.
//!
//! The template parameter \c T is the type to be managed by the container.
//! The user can specify additional options and if no options are provided
//! default options are used.
//!
//! The container supports the following options:
//! \c base_hook<>/member_hook<>/value_traits<>,
//! \c constant_time_size<> and \c size_type<>.
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
template<class T, class ...Options>
#else
template <class ValueTraits, class SizeType, bool ConstantTimeSize, typename HeaderHolder>
#endif
class list_impl
{
//Public typedefs
public:
typedef ValueTraits value_traits;
typedef typename value_traits::pointer pointer;
typedef typename value_traits::const_pointer const_pointer;
typedef typename pointer_traits<pointer>::element_type value_type;
typedef typename pointer_traits<pointer>::reference reference;
typedef typename pointer_traits<const_pointer>::reference const_reference;
typedef typename pointer_traits<pointer>::difference_type difference_type;
typedef SizeType size_type;
typedef list_iterator<value_traits, false> iterator;
typedef list_iterator<value_traits, true> const_iterator;
typedef boost::intrusive::reverse_iterator<iterator> reverse_iterator;
typedef boost::intrusive::reverse_iterator<const_iterator> const_reverse_iterator;
typedef typename value_traits::node_traits node_traits;
typedef typename node_traits::node node;
typedef typename node_traits::node_ptr node_ptr;
typedef typename node_traits::const_node_ptr const_node_ptr;
typedef circular_list_algorithms<node_traits> node_algorithms;
typedef typename detail::get_header_holder_type
< value_traits, HeaderHolder >::type header_holder_type;
static const bool constant_time_size = ConstantTimeSize;
static const bool stateful_value_traits = detail::is_stateful_value_traits<value_traits>::value;
static const bool has_container_from_iterator =
detail::is_same< header_holder_type, detail::default_header_holder< node_traits > >::value;
/// @cond
private:
typedef detail::size_holder<constant_time_size, size_type> size_traits;
//noncopyable
BOOST_MOVABLE_BUT_NOT_COPYABLE(list_impl)
static const bool safemode_or_autounlink = is_safe_autounlink<value_traits::link_mode>::value;
//Constant-time size is incompatible with auto-unlink hooks!
BOOST_STATIC_ASSERT(!(constant_time_size &&
((int)value_traits::link_mode == (int)auto_unlink)
));
node_ptr get_root_node()
{ return data_.root_plus_size_.m_header.get_node(); }
const_node_ptr get_root_node() const
{ return data_.root_plus_size_.m_header.get_node(); }
struct root_plus_size : public size_traits
{
header_holder_type m_header;
};
struct data_t : public value_traits
{
typedef typename list_impl::value_traits value_traits;
explicit data_t(const value_traits &val_traits)
: value_traits(val_traits)
{}
root_plus_size root_plus_size_;
} data_;
size_traits &priv_size_traits()
{ return data_.root_plus_size_; }
const size_traits &priv_size_traits() const
{ return data_.root_plus_size_; }
const value_traits &priv_value_traits() const
{ return data_; }
value_traits &priv_value_traits()
{ return data_; }
typedef typename boost::intrusive::value_traits_pointers
<ValueTraits>::const_value_traits_ptr const_value_traits_ptr;
const_value_traits_ptr priv_value_traits_ptr() const
{ return pointer_traits<const_value_traits_ptr>::pointer_to(this->priv_value_traits()); }
/// @endcond
public:
//! <b>Effects</b>: constructs an empty list.
//!
//! <b>Complexity</b>: Constant
//!
//! <b>Throws</b>: If value_traits::node_traits::node
//! constructor throws (this does not happen with predefined Boost.Intrusive hooks).
list_impl()
: data_(value_traits())
{
this->priv_size_traits().set_size(size_type(0));
node_algorithms::init_header(this->get_root_node());
}
//! <b>Effects</b>: constructs an empty list.
//!
//! <b>Complexity</b>: Constant
//!
//! <b>Throws</b>: If value_traits::node_traits::node
//! constructor throws (this does not happen with predefined Boost.Intrusive hooks).
explicit list_impl(const value_traits &v_traits)
: data_(v_traits)
{
this->priv_size_traits().set_size(size_type(0));
node_algorithms::init_header(this->get_root_node());
}
//! <b>Requires</b>: Dereferencing iterator must yield an lvalue of type value_type.
//!
//! <b>Effects</b>: Constructs a list equal to the range [first,last).
//!
//! <b>Complexity</b>: Linear in distance(b, e). No copy constructors are called.
//!
//! <b>Throws</b>: If value_traits::node_traits::node
//! constructor throws (this does not happen with predefined Boost.Intrusive hooks).
template<class Iterator>
list_impl(Iterator b, Iterator e, const value_traits &v_traits = value_traits())
: data_(v_traits)
{
//nothrow, no need to rollback to release elements on exception
this->priv_size_traits().set_size(size_type(0));
node_algorithms::init_header(this->get_root_node());
//nothrow, no need to rollback to release elements on exception
this->insert(this->cend(), b, e);
}
//! <b>Effects</b>: to-do
//!
list_impl(BOOST_RV_REF(list_impl) x)
: data_(::boost::move(x.priv_value_traits()))
{
this->priv_size_traits().set_size(size_type(0));
node_algorithms::init_header(this->get_root_node());
//nothrow, no need to rollback to release elements on exception
this->swap(x);
}
//! <b>Effects</b>: to-do
//!
list_impl& operator=(BOOST_RV_REF(list_impl) x)
{ this->swap(x); return *this; }
//! <b>Effects</b>: If it's not a safe-mode or an auto-unlink value_type
//! the destructor does nothing
//! (ie. no code is generated). Otherwise it detaches all elements from this.
//! In this case the objects in the list are not deleted (i.e. no destructors
//! are called), but the hooks according to the ValueTraits template parameter
//! are set to their default value.
//!
//! <b>Complexity</b>: Linear to the number of elements in the list, if
//! it's a safe-mode or auto-unlink value . Otherwise constant.
~list_impl()
{
if(is_safe_autounlink<ValueTraits::link_mode>::value){
this->clear();
node_algorithms::init(this->get_root_node());
}
}
//! <b>Requires</b>: value must be an lvalue.
//!
//! <b>Effects</b>: Inserts the value in the back of the list.
//! No copy constructors are called.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
void push_back(reference value)
{
node_ptr to_insert = priv_value_traits().to_node_ptr(value);
BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(!safemode_or_autounlink || node_algorithms::inited(to_insert));
node_algorithms::link_before(this->get_root_node(), to_insert);
this->priv_size_traits().increment();
}
//! <b>Requires</b>: value must be an lvalue.
//!
//! <b>Effects</b>: Inserts the value in the front of the list.
//! No copy constructors are called.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
void push_front(reference value)
{
node_ptr to_insert = priv_value_traits().to_node_ptr(value);
BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(!safemode_or_autounlink || node_algorithms::inited(to_insert));
node_algorithms::link_before(node_traits::get_next(this->get_root_node()), to_insert);
this->priv_size_traits().increment();
}
//! <b>Effects</b>: Erases the last element of the list.
//! No destructors are called.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references) to the erased element.
void pop_back()
{ return this->pop_back_and_dispose(detail::null_disposer()); }
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases the last element of the list.
//! No destructors are called.
//! Disposer::operator()(pointer) is called for the removed element.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Invalidates the iterators to the erased element.
template<class Disposer>
void pop_back_and_dispose(Disposer disposer)
{
node_ptr to_erase = node_traits::get_previous(this->get_root_node());
node_algorithms::unlink(to_erase);
this->priv_size_traits().decrement();
if(safemode_or_autounlink)
node_algorithms::init(to_erase);
disposer(priv_value_traits().to_value_ptr(to_erase));
}
//! <b>Effects</b>: Erases the first element of the list.
//! No destructors are called.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references) to the erased element.
void pop_front()
{ return this->pop_front_and_dispose(detail::null_disposer()); }
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases the first element of the list.
//! No destructors are called.
//! Disposer::operator()(pointer) is called for the removed element.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Invalidates the iterators to the erased element.
template<class Disposer>
void pop_front_and_dispose(Disposer disposer)
{
node_ptr to_erase = node_traits::get_next(this->get_root_node());
node_algorithms::unlink(to_erase);
this->priv_size_traits().decrement();
if(safemode_or_autounlink)
node_algorithms::init(to_erase);
disposer(priv_value_traits().to_value_ptr(to_erase));
}
//! <b>Effects</b>: Returns a reference to the first element of the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reference front()
{ return *priv_value_traits().to_value_ptr(node_traits::get_next(this->get_root_node())); }
//! <b>Effects</b>: Returns a const_reference to the first element of the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reference front() const
{ return *priv_value_traits().to_value_ptr(node_traits::get_next(this->get_root_node())); }
//! <b>Effects</b>: Returns a reference to the last element of the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reference back()
{ return *priv_value_traits().to_value_ptr(node_traits::get_previous(this->get_root_node())); }
//! <b>Effects</b>: Returns a const_reference to the last element of the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reference back() const
{ return *priv_value_traits().to_value_ptr(detail::uncast(node_traits::get_previous(this->get_root_node()))); }
//! <b>Effects</b>: Returns an iterator to the first element contained in the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator begin()
{ return iterator(node_traits::get_next(this->get_root_node()), this->priv_value_traits_ptr()); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator begin() const
{ return this->cbegin(); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cbegin() const
{ return const_iterator(node_traits::get_next(this->get_root_node()), this->priv_value_traits_ptr()); }
//! <b>Effects</b>: Returns an iterator to the end of the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator end()
{ return iterator(this->get_root_node(), this->priv_value_traits_ptr()); }
//! <b>Effects</b>: Returns a const_iterator to the end of the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator end() const
{ return this->cend(); }
//! <b>Effects</b>: Returns a constant iterator to the end of the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cend() const
{ return const_iterator(detail::uncast(this->get_root_node()), this->priv_value_traits_ptr()); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
//! of the reversed list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rbegin()
{ return reverse_iterator(this->end()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rbegin() const
{ return this->crbegin(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator crbegin() const
{ return const_reverse_iterator(end()); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end
//! of the reversed list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rend()
{ return reverse_iterator(begin()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rend() const
{ return this->crend(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator crend() const
{ return const_reverse_iterator(this->begin()); }
//! <b>Precondition</b>: end_iterator must be a valid end iterator
//! of list.
//!
//! <b>Effects</b>: Returns a const reference to the list associated to the end iterator
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
static list_impl &container_from_end_iterator(iterator end_iterator)
{ return list_impl::priv_container_from_end_iterator(end_iterator); }
//! <b>Precondition</b>: end_iterator must be a valid end const_iterator
//! of list.
//!
//! <b>Effects</b>: Returns a const reference to the list associated to the end iterator
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
static const list_impl &container_from_end_iterator(const_iterator end_iterator)
{ return list_impl::priv_container_from_end_iterator(end_iterator); }
//! <b>Effects</b>: Returns the number of the elements contained in the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements contained in the list.
//! if constant-time size option is disabled. Constant time otherwise.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
size_type size() const
{
if(constant_time_size)
return this->priv_size_traits().get_size();
else
return node_algorithms::count(this->get_root_node()) - 1;
}
//! <b>Effects</b>: Returns true if the list contains no elements.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
bool empty() const
{ return node_algorithms::unique(this->get_root_node()); }
//! <b>Effects</b>: Swaps the elements of x and *this.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
void swap(list_impl& other)
{
node_algorithms::swap_nodes(this->get_root_node(), other.get_root_node());
this->priv_size_traits().swap(other.priv_size_traits());
}
//! <b>Effects</b>: Moves backwards all the elements, so that the first
//! element becomes the second, the second becomes the third...
//! the last element becomes the first one.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of shifts.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
void shift_backwards(size_type n = 1)
{ node_algorithms::move_forward(this->get_root_node(), n); }
//! <b>Effects</b>: Moves forward all the elements, so that the second
//! element becomes the first, the third becomes the second...
//! the first element becomes the last one.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of shifts.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
void shift_forward(size_type n = 1)
{ node_algorithms::move_backwards(this->get_root_node(), n); }
//! <b>Effects</b>: Erases the element pointed by i of the list.
//! No destructors are called.
//!
//! <b>Returns</b>: the first element remaining beyond the removed element,
//! or end() if no such element exists.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references) to the
//! erased element.
iterator erase(const_iterator i)
{ return this->erase_and_dispose(i, detail::null_disposer()); }
//! <b>Requires</b>: b and e must be valid iterators to elements in *this.
//!
//! <b>Effects</b>: Erases the element range pointed by b and e
//! No destructors are called.
//!
//! <b>Returns</b>: the first element remaining beyond the removed elements,
//! or end() if no such element exists.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of erased elements if it's a safe-mode
//! or auto-unlink value, or constant-time size is enabled. Constant-time otherwise.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references) to the
//! erased elements.
iterator erase(const_iterator b, const_iterator e)
{
if(safemode_or_autounlink || constant_time_size){
return this->erase_and_dispose(b, e, detail::null_disposer());
}
else{
node_algorithms::unlink(b.pointed_node(), e.pointed_node());
return e.unconst();
}
}
//! <b>Requires</b>: b and e must be valid iterators to elements in *this.
//! n must be distance(b, e).
//!
//! <b>Effects</b>: Erases the element range pointed by b and e
//! No destructors are called.
//!
//! <b>Returns</b>: the first element remaining beyond the removed elements,
//! or end() if no such element exists.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of erased elements if it's a safe-mode
//! or auto-unlink value is enabled. Constant-time otherwise.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references) to the
//! erased elements.
iterator erase(const_iterator b, const_iterator e, size_type n)
{
BOOST_INTRUSIVE_INVARIANT_ASSERT(node_algorithms::distance(b.pointed_node(), e.pointed_node()) == n);
if(safemode_or_autounlink || constant_time_size){
return this->erase_and_dispose(b, e, detail::null_disposer());
}
else{
if(constant_time_size){
this->priv_size_traits().decrease(n);
}
node_algorithms::unlink(b.pointed_node(), e.pointed_node());
return e.unconst();
}
}
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases the element pointed by i of the list.
//! No destructors are called.
//! Disposer::operator()(pointer) is called for the removed element.
//!
//! <b>Returns</b>: the first element remaining beyond the removed element,
//! or end() if no such element exists.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Invalidates the iterators to the erased element.
template <class Disposer>
iterator erase_and_dispose(const_iterator i, Disposer disposer)
{
node_ptr to_erase(i.pointed_node());
++i;
node_algorithms::unlink(to_erase);
this->priv_size_traits().decrement();
if(safemode_or_autounlink)
node_algorithms::init(to_erase);
disposer(this->priv_value_traits().to_value_ptr(to_erase));
return i.unconst();
}
#if !defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
template<class Disposer>
iterator erase_and_dispose(iterator i, Disposer disposer)
{ return this->erase_and_dispose(const_iterator(i), disposer); }
#endif
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases the element range pointed by b and e
//! No destructors are called.
//! Disposer::operator()(pointer) is called for the removed elements.
//!
//! <b>Returns</b>: the first element remaining beyond the removed elements,
//! or end() if no such element exists.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements erased.
//!
//! <b>Note</b>: Invalidates the iterators to the erased elements.
template <class Disposer>
iterator erase_and_dispose(const_iterator b, const_iterator e, Disposer disposer)
{
node_ptr bp(b.pointed_node()), ep(e.pointed_node());
node_algorithms::unlink(bp, ep);
while(bp != ep){
node_ptr to_erase(bp);
bp = node_traits::get_next(bp);
if(safemode_or_autounlink)
node_algorithms::init(to_erase);
disposer(priv_value_traits().to_value_ptr(to_erase));
this->priv_size_traits().decrement();
}
return e.unconst();
}
//! <b>Effects</b>: Erases all the elements of the container.
//! No destructors are called.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements of the list.
//! if it's a safe-mode or auto-unlink value_type. Constant time otherwise.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references) to the erased elements.
void clear()
{
if(safemode_or_autounlink){
this->clear_and_dispose(detail::null_disposer());
}
else{
node_algorithms::init_header(this->get_root_node());
this->priv_size_traits().set_size(size_type(0));
}
}
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases all the elements of the container.
//! No destructors are called.
//! Disposer::operator()(pointer) is called for the removed elements.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements of the list.
//!
//! <b>Note</b>: Invalidates the iterators to the erased elements.
template <class Disposer>
void clear_and_dispose(Disposer disposer)
{
const_iterator it(this->begin()), itend(this->end());
while(it != itend){
node_ptr to_erase(it.pointed_node());
++it;
if(safemode_or_autounlink)
node_algorithms::init(to_erase);
disposer(priv_value_traits().to_value_ptr(to_erase));
}
node_algorithms::init_header(this->get_root_node());
this->priv_size_traits().set_size(0);
}
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//! Cloner should yield to nodes equivalent to the original nodes.
//!
//! <b>Effects</b>: Erases all the elements from *this
//! calling Disposer::operator()(pointer), clones all the
//! elements from src calling Cloner::operator()(const_reference )
//! and inserts them on *this.
//!
//! If cloner throws, all cloned elements are unlinked and disposed
//! calling Disposer::operator()(pointer).
//!
//! <b>Complexity</b>: Linear to erased plus inserted elements.
//!
//! <b>Throws</b>: If cloner throws. Basic guarantee.
template <class Cloner, class Disposer>
void clone_from(const list_impl &src, Cloner cloner, Disposer disposer)
{
this->clear_and_dispose(disposer);
detail::exception_disposer<list_impl, Disposer>
rollback(*this, disposer);
const_iterator b(src.begin()), e(src.end());
for(; b != e; ++b){
this->push_back(*cloner(*b));
}
rollback.release();
}
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//! Cloner should yield to nodes equivalent to the original nodes.
//!
//! <b>Effects</b>: Erases all the elements from *this
//! calling Disposer::operator()(pointer), clones all the
//! elements from src calling Cloner::operator()(reference)
//! and inserts them on *this.
//!
//! If cloner throws, all cloned elements are unlinked and disposed
//! calling Disposer::operator()(pointer).
//!
//! <b>Complexity</b>: Linear to erased plus inserted elements.
//!
//! <b>Throws</b>: If cloner throws. Basic guarantee.
template <class Cloner, class Disposer>
void clone_from(BOOST_RV_REF(list_impl) src, Cloner cloner, Disposer disposer)
{
this->clear_and_dispose(disposer);
detail::exception_disposer<list_impl, Disposer>
rollback(*this, disposer);
iterator b(src.begin()), e(src.end());
for(; b != e; ++b){
this->push_back(*cloner(*b));
}
rollback.release();
}
//! <b>Requires</b>: value must be an lvalue and p must be a valid iterator of *this.
//!
//! <b>Effects</b>: Inserts the value before the position pointed by p.
//!
//! <b>Returns</b>: An iterator to the inserted element.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant time. No copy constructors are called.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
iterator insert(const_iterator p, reference value)
{
node_ptr to_insert = this->priv_value_traits().to_node_ptr(value);
BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(!safemode_or_autounlink || node_algorithms::inited(to_insert));
node_algorithms::link_before(p.pointed_node(), to_insert);
this->priv_size_traits().increment();
return iterator(to_insert, this->priv_value_traits_ptr());
}
//! <b>Requires</b>: Dereferencing iterator must yield
//! an lvalue of type value_type and p must be a valid iterator of *this.
//!
//! <b>Effects</b>: Inserts the range pointed by b and e before the position p.
//! No copy constructors are called.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements inserted.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
template<class Iterator>
void insert(const_iterator p, Iterator b, Iterator e)
{
for (; b != e; ++b)
this->insert(p, *b);
}
//! <b>Requires</b>: Dereferencing iterator must yield
//! an lvalue of type value_type.
//!
//! <b>Effects</b>: Clears the list and inserts the range pointed by b and e.
//! No destructors or copy constructors are called.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements inserted plus
//! linear to the elements contained in the list if it's a safe-mode
//! or auto-unlink value.
//! Linear to the number of elements inserted in the list otherwise.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements.
template<class Iterator>
void assign(Iterator b, Iterator e)
{
this->clear();
this->insert(this->cend(), b, e);
}
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Requires</b>: Dereferencing iterator must yield
//! an lvalue of type value_type.
//!
//! <b>Effects</b>: Clears the list and inserts the range pointed by b and e.
//! No destructors or copy constructors are called.
//! Disposer::operator()(pointer) is called for the removed elements.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements inserted plus
//! linear to the elements contained in the list.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements.
template<class Iterator, class Disposer>
void dispose_and_assign(Disposer disposer, Iterator b, Iterator e)
{
this->clear_and_dispose(disposer);
this->insert(this->cend(), b, e);
}
//! <b>Requires</b>: p must be a valid iterator of *this.
//!
//! <b>Effects</b>: Transfers all the elements of list x to this list, before the
//! the element pointed by p. No destructors or copy constructors are called.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Iterators of values obtained from list x now point to elements of
//! this list. Iterators of this list and all the references are not invalidated.
void splice(const_iterator p, list_impl& x)
{
if(!x.empty()){
node_algorithms::transfer
(p.pointed_node(), x.begin().pointed_node(), x.end().pointed_node());
size_traits &thist = this->priv_size_traits();
size_traits &xt = x.priv_size_traits();
thist.increase(xt.get_size());
xt.set_size(size_type(0));
}
}
//! <b>Requires</b>: p must be a valid iterator of *this.
//! new_ele must point to an element contained in list x.
//!
//! <b>Effects</b>: Transfers the value pointed by new_ele, from list x to this list,
//! before the element pointed by p. No destructors or copy constructors are called.
//! If p == new_ele or p == ++new_ele, this function is a null operation.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Iterators of values obtained from list x now point to elements of this
//! list. Iterators of this list and all the references are not invalidated.
void splice(const_iterator p, list_impl&x, const_iterator new_ele)
{
node_algorithms::transfer(p.pointed_node(), new_ele.pointed_node());
x.priv_size_traits().decrement();
this->priv_size_traits().increment();
}
//! <b>Requires</b>: p must be a valid iterator of *this.
//! f and e must point to elements contained in list x.
//!
//! <b>Effects</b>: Transfers the range pointed by f and e from list x to this list,
//! before the element pointed by p. No destructors or copy constructors are called.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements transferred
//! if constant-time size option is enabled. Constant-time otherwise.
//!
//! <b>Note</b>: Iterators of values obtained from list x now point to elements of this
//! list. Iterators of this list and all the references are not invalidated.
void splice(const_iterator p, list_impl&x, const_iterator f, const_iterator e)
{
if(constant_time_size)
this->splice(p, x, f, e, node_algorithms::distance(f.pointed_node(), e.pointed_node()));
else
this->splice(p, x, f, e, 1);//intrusive::iterator_distance is a dummy value
}
//! <b>Requires</b>: p must be a valid iterator of *this.
//! f and e must point to elements contained in list x.
//! n == distance(f, e)
//!
//! <b>Effects</b>: Transfers the range pointed by f and e from list x to this list,
//! before the element pointed by p. No destructors or copy constructors are called.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Iterators of values obtained from list x now point to elements of this
//! list. Iterators of this list and all the references are not invalidated.
void splice(const_iterator p, list_impl&x, const_iterator f, const_iterator e, size_type n)
{
if(n){
if(constant_time_size){
BOOST_INTRUSIVE_INVARIANT_ASSERT(n == node_algorithms::distance(f.pointed_node(), e.pointed_node()));
node_algorithms::transfer(p.pointed_node(), f.pointed_node(), e.pointed_node());
size_traits &thist = this->priv_size_traits();
size_traits &xt = x.priv_size_traits();
thist.increase(n);
xt.decrease(n);
}
else{
node_algorithms::transfer(p.pointed_node(), f.pointed_node(), e.pointed_node());
}
}
}
//! <b>Effects</b>: This function sorts the list *this according to std::less<value_type>.
//! The sort is stable, that is, the relative order of equivalent elements is preserved.
//!
//! <b>Throws</b>: If value_traits::node_traits::node
//! constructor throws (this does not happen with predefined Boost.Intrusive hooks)
//! or std::less<value_type> throws. Basic guarantee.
//!
//! <b>Notes</b>: Iterators and references are not invalidated.
//!
//! <b>Complexity</b>: The number of comparisons is approximately N log N, where N
//! is the list's size.
void sort()
{ this->sort(std::less<value_type>()); }
//! <b>Requires</b>: p must be a comparison function that induces a strict weak ordering
//!
//! <b>Effects</b>: This function sorts the list *this according to p. The sort is
//! stable, that is, the relative order of equivalent elements is preserved.
//!
//! <b>Throws</b>: If value_traits::node_traits::node
//! constructor throws (this does not happen with predefined Boost.Intrusive hooks)
//! or the predicate throws. Basic guarantee.
//!
//! <b>Notes</b>: This won't throw if list_base_hook<> or
//! list_member_hook are used.
//! Iterators and references are not invalidated.
//!
//! <b>Complexity</b>: The number of comparisons is approximately N log N, where N
//! is the list's size.
template<class Predicate>
void sort(Predicate p)
{
if(node_traits::get_next(this->get_root_node())
!= node_traits::get_previous(this->get_root_node())){
list_impl carry(this->priv_value_traits());
detail::array_initializer<list_impl, 64> counter(this->priv_value_traits());
int fill = 0;
while(!this->empty()){
carry.splice(carry.cbegin(), *this, this->cbegin());
int i = 0;
while(i < fill && !counter[i].empty()) {
counter[i].merge(carry, p);
carry.swap(counter[i++]);
}
carry.swap(counter[i]);
if(i == fill)
++fill;
}
for (int i = 1; i < fill; ++i)
counter[i].merge(counter[i-1], p);
this->swap(counter[fill-1]);
}
}
//! <b>Effects</b>: This function removes all of x's elements and inserts them
//! in order into *this according to std::less<value_type>. The merge is stable;
//! that is, if an element from *this is equivalent to one from x, then the element
//! from *this will precede the one from x.
//!
//! <b>Throws</b>: If std::less<value_type> throws. Basic guarantee.
//!
//! <b>Complexity</b>: This function is linear time: it performs at most
//! size() + x.size() - 1 comparisons.
//!
//! <b>Note</b>: Iterators and references are not invalidated
void merge(list_impl& x)
{ this->merge(x, std::less<value_type>()); }
//! <b>Requires</b>: p must be a comparison function that induces a strict weak
//! ordering and both *this and x must be sorted according to that ordering
//! The lists x and *this must be distinct.
//!
//! <b>Effects</b>: This function removes all of x's elements and inserts them
//! in order into *this. The merge is stable; that is, if an element from *this is
//! equivalent to one from x, then the element from *this will precede the one from x.
//!
//! <b>Throws</b>: If the predicate throws. Basic guarantee.
//!
//! <b>Complexity</b>: This function is linear time: it performs at most
//! size() + x.size() - 1 comparisons.
//!
//! <b>Note</b>: Iterators and references are not invalidated.
template<class Predicate>
void merge(list_impl& x, Predicate p)
{
const_iterator e(this->cend()), ex(x.cend());
const_iterator b(this->cbegin());
while(!x.empty()){
const_iterator ix(x.cbegin());
while (b != e && !p(*ix, *b)){
++b;
}
if(b == e){
//Now transfer the rest to the end of the container
this->splice(e, x);
break;
}
else{
size_type n(0);
do{
++ix; ++n;
} while(ix != ex && p(*ix, *b));
this->splice(b, x, x.begin(), ix, n);
}
}
}
//! <b>Effects</b>: Reverses the order of elements in the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: This function is linear time.
//!
//! <b>Note</b>: Iterators and references are not invalidated
void reverse()
{ node_algorithms::reverse(this->get_root_node()); }
//! <b>Effects</b>: Removes all the elements that compare equal to value.
//! No destructors are called.
//!
//! <b>Throws</b>: If std::equal_to<value_type> throws. Basic guarantee.
//!
//! <b>Complexity</b>: Linear time. It performs exactly size() comparisons for equality.
//!
//! <b>Note</b>: The relative order of elements that are not removed is unchanged,
//! and iterators to elements that are not removed remain valid.
void remove(const_reference value)
{ this->remove_if(detail::equal_to_value<const_reference>(value)); }
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Removes all the elements that compare equal to value.
//! Disposer::operator()(pointer) is called for every removed element.
//!
//! <b>Throws</b>: If std::equal_to<value_type> throws. Basic guarantee.
//!
//! <b>Complexity</b>: Linear time. It performs exactly size() comparisons for equality.
//!
//! <b>Note</b>: The relative order of elements that are not removed is unchanged,
//! and iterators to elements that are not removed remain valid.
template<class Disposer>
void remove_and_dispose(const_reference value, Disposer disposer)
{ this->remove_and_dispose_if(detail::equal_to_value<const_reference>(value), disposer); }
//! <b>Effects</b>: Removes all the elements for which a specified
//! predicate is satisfied. No destructors are called.
//!
//! <b>Throws</b>: If pred throws. Basic guarantee.
//!
//! <b>Complexity</b>: Linear time. It performs exactly size() calls to the predicate.
//!
//! <b>Note</b>: The relative order of elements that are not removed is unchanged,
//! and iterators to elements that are not removed remain valid.
template<class Pred>
void remove_if(Pred pred)
{
const node_ptr root_node = this->get_root_node();
typename node_algorithms::stable_partition_info info;
node_algorithms::stable_partition
(node_traits::get_next(root_node), root_node, detail::key_nodeptr_comp<Pred, value_traits>(pred, &this->priv_value_traits()), info);
//Invariants preserved by stable_partition so erase can be safely called
//The first element might have changed so calculate it again
this->erase( const_iterator(node_traits::get_next(root_node), this->priv_value_traits_ptr())
, const_iterator(info.beg_2st_partition, this->priv_value_traits_ptr())
, info.num_1st_partition);
}
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Removes all the elements for which a specified
//! predicate is satisfied.
//! Disposer::operator()(pointer) is called for every removed element.
//!
//! <b>Throws</b>: If pred throws. Basic guarantee.
//!
//! <b>Complexity</b>: Linear time. It performs exactly size() comparisons for equality.
//!
//! <b>Note</b>: The relative order of elements that are not removed is unchanged,
//! and iterators to elements that are not removed remain valid.
template<class Pred, class Disposer>
void remove_and_dispose_if(Pred pred, Disposer disposer)
{
const node_ptr root_node = this->get_root_node();
typename node_algorithms::stable_partition_info info;
node_algorithms::stable_partition
(node_traits::get_next(root_node), root_node, detail::key_nodeptr_comp<Pred, value_traits>(pred, &this->priv_value_traits()), info);
//Invariants preserved by stable_partition so erase can be safely called
//The first element might have changed so calculate it again
this->erase_and_dispose( const_iterator(node_traits::get_next(root_node), this->priv_value_traits_ptr())
, const_iterator(info.beg_2st_partition, this->priv_value_traits_ptr())
, disposer);
}
//! <b>Effects</b>: Removes adjacent duplicate elements or adjacent
//! elements that are equal from the list. No destructors are called.
//!
//! <b>Throws</b>: If std::equal_to<value_type throws. Basic guarantee.
//!
//! <b>Complexity</b>: Linear time (size()-1 comparisons calls to pred()).
//!
//! <b>Note</b>: The relative order of elements that are not removed is unchanged,
//! and iterators to elements that are not removed remain valid.
void unique()
{ this->unique_and_dispose(std::equal_to<value_type>(), detail::null_disposer()); }
//! <b>Effects</b>: Removes adjacent duplicate elements or adjacent
//! elements that satisfy some binary predicate from the list.
//! No destructors are called.
//!
//! <b>Throws</b>: If pred throws. Basic guarantee.
//!
//! <b>Complexity</b>: Linear time (size()-1 comparisons equality comparisons).
//!
//! <b>Note</b>: The relative order of elements that are not removed is unchanged,
//! and iterators to elements that are not removed remain valid.
template<class BinaryPredicate>
void unique(BinaryPredicate pred)
{ this->unique_and_dispose(pred, detail::null_disposer()); }
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Removes adjacent duplicate elements or adjacent
//! elements that are equal from the list.
//! Disposer::operator()(pointer) is called for every removed element.
//!
//! <b>Throws</b>: If std::equal_to<value_type throws. Basic guarantee.
//!
//! <b>Complexity</b>: Linear time (size()-1) comparisons equality comparisons.
//!
//! <b>Note</b>: The relative order of elements that are not removed is unchanged,
//! and iterators to elements that are not removed remain valid.
template<class Disposer>
void unique_and_dispose(Disposer disposer)
{ this->unique_and_dispose(std::equal_to<value_type>(), disposer); }
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Removes adjacent duplicate elements or adjacent
//! elements that satisfy some binary predicate from the list.
//! Disposer::operator()(pointer) is called for every removed element.
//!
//! <b>Throws</b>: If pred throws. Basic guarantee.
//!
//! <b>Complexity</b>: Linear time (size()-1) comparisons equality comparisons.
//!
//! <b>Note</b>: The relative order of elements that are not removed is unchanged,
//! and iterators to elements that are not removed remain valid.
template<class BinaryPredicate, class Disposer>
void unique_and_dispose(BinaryPredicate pred, Disposer disposer)
{
const_iterator itend(this->cend());
const_iterator cur(this->cbegin());
if(cur != itend){
const_iterator after(cur);
++after;
while(after != itend){
if(pred(*cur, *after)){
after = this->erase_and_dispose(after, disposer);
}
else{
cur = after;
++after;
}
}
}
}
//! <b>Requires</b>: value must be a reference to a value inserted in a list.
//!
//! <b>Effects</b>: This function returns a const_iterator pointing to the element
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant time.
//!
//! <b>Note</b>: Iterators and references are not invalidated.
//! This static function is available only if the <i>value traits</i>
//! is stateless.
static iterator s_iterator_to(reference value)
{
BOOST_STATIC_ASSERT((!stateful_value_traits));
BOOST_INTRUSIVE_INVARIANT_ASSERT(!node_algorithms::inited(value_traits::to_node_ptr(value)));
return iterator(value_traits::to_node_ptr(value), const_value_traits_ptr());
}
//! <b>Requires</b>: value must be a const reference to a value inserted in a list.
//!
//! <b>Effects</b>: This function returns an iterator pointing to the element.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant time.
//!
//! <b>Note</b>: Iterators and references are not invalidated.
//! This static function is available only if the <i>value traits</i>
//! is stateless.
static const_iterator s_iterator_to(const_reference value)
{
BOOST_STATIC_ASSERT((!stateful_value_traits));
reference r =*detail::uncast(pointer_traits<const_pointer>::pointer_to(value));
BOOST_INTRUSIVE_INVARIANT_ASSERT(!node_algorithms::inited(value_traits::to_node_ptr(r)));
return const_iterator(value_traits::to_node_ptr(r), const_value_traits_ptr());
}
//! <b>Requires</b>: value must be a reference to a value inserted in a list.
//!
//! <b>Effects</b>: This function returns a const_iterator pointing to the element
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant time.
//!
//! <b>Note</b>: Iterators and references are not invalidated.
iterator iterator_to(reference value)
{
BOOST_INTRUSIVE_INVARIANT_ASSERT(!node_algorithms::inited(this->priv_value_traits().to_node_ptr(value)));
return iterator(this->priv_value_traits().to_node_ptr(value), this->priv_value_traits_ptr());
}
//! <b>Requires</b>: value must be a const reference to a value inserted in a list.
//!
//! <b>Effects</b>: This function returns an iterator pointing to the element.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant time.
//!
//! <b>Note</b>: Iterators and references are not invalidated.
const_iterator iterator_to(const_reference value) const
{
reference r = *detail::uncast(pointer_traits<const_pointer>::pointer_to(value));
BOOST_INTRUSIVE_INVARIANT_ASSERT(!node_algorithms::inited(this->priv_value_traits().to_node_ptr(r)));
return const_iterator(this->priv_value_traits().to_node_ptr(r), this->priv_value_traits_ptr());
}
//! <b>Effects</b>: Asserts the integrity of the container.
//!
//! <b>Complexity</b>: Linear time.
//!
//! <b>Note</b>: The method has no effect when asserts are turned off (e.g., with NDEBUG).
//! Experimental function, interface might change in future versions.
void check() const
{
const_node_ptr header_ptr = get_root_node();
// header's next and prev are never null
BOOST_INTRUSIVE_INVARIANT_ASSERT(node_traits::get_next(header_ptr));
BOOST_INTRUSIVE_INVARIANT_ASSERT(node_traits::get_previous(header_ptr));
// header's next and prev either both point to header (empty list) or neither does
BOOST_INTRUSIVE_INVARIANT_ASSERT((node_traits::get_next(header_ptr) == header_ptr)
== (node_traits::get_previous(header_ptr) == header_ptr));
if (node_traits::get_next(header_ptr) == header_ptr)
{
if (constant_time_size)
BOOST_INTRUSIVE_INVARIANT_ASSERT(this->priv_size_traits().get_size() == 0);
return;
}
size_t node_count = 0;
const_node_ptr p = header_ptr;
while (true)
{
const_node_ptr next_p = node_traits::get_next(p);
BOOST_INTRUSIVE_INVARIANT_ASSERT(next_p);
BOOST_INTRUSIVE_INVARIANT_ASSERT(node_traits::get_previous(next_p) == p);
p = next_p;
if (p == header_ptr) break;
++node_count;
}
if (constant_time_size)
BOOST_INTRUSIVE_INVARIANT_ASSERT(this->priv_size_traits().get_size() == node_count);
}
friend bool operator==(const list_impl &x, const list_impl &y)
{
if(constant_time_size && x.size() != y.size()){
return false;
}
return ::boost::intrusive::algo_equal(x.cbegin(), x.cend(), y.cbegin(), y.cend());
}
friend bool operator!=(const list_impl &x, const list_impl &y)
{ return !(x == y); }
friend bool operator<(const list_impl &x, const list_impl &y)
{ return ::boost::intrusive::algo_lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); }
friend bool operator>(const list_impl &x, const list_impl &y)
{ return y < x; }
friend bool operator<=(const list_impl &x, const list_impl &y)
{ return !(y < x); }
friend bool operator>=(const list_impl &x, const list_impl &y)
{ return !(x < y); }
friend void swap(list_impl &x, list_impl &y)
{ x.swap(y); }
/// @cond
private:
static list_impl &priv_container_from_end_iterator(const const_iterator &end_iterator)
{
BOOST_STATIC_ASSERT((has_container_from_iterator));
node_ptr p = end_iterator.pointed_node();
header_holder_type* h = header_holder_type::get_holder(p);
root_plus_size* r = detail::parent_from_member
< root_plus_size, header_holder_type>(h, &root_plus_size::m_header);
data_t *d = detail::parent_from_member<data_t, root_plus_size>
( r, &data_t::root_plus_size_);
list_impl *s = detail::parent_from_member<list_impl, data_t>(d, &list_impl::data_);
return *s;
}
/// @endcond
};
//! Helper metafunction to define a \c list that yields to the same type when the
//! same options (either explicitly or implicitly) are used.
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) || defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES)
template<class T, class ...Options>
#else
template<class T, class O1 = void, class O2 = void, class O3 = void, class O4 = void>
#endif
struct make_list
{
/// @cond
typedef typename pack_options
< list_defaults,
#if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES)
O1, O2, O3, O4
#else
Options...
#endif
>::type packed_options;
typedef typename detail::get_value_traits
<T, typename packed_options::proto_value_traits>::type value_traits;
typedef list_impl
<
value_traits,
typename packed_options::size_type,
packed_options::constant_time_size,
typename packed_options::header_holder_type
> implementation_defined;
/// @endcond
typedef implementation_defined type;
};
#ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
#if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES)
template<class T, class O1, class O2, class O3, class O4>
#else
template<class T, class ...Options>
#endif
class list
: public make_list<T,
#if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES)
O1, O2, O3, O4
#else
Options...
#endif
>::type
{
typedef typename make_list
<T,
#if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES)
O1, O2, O3, O4
#else
Options...
#endif
>::type Base;
//Assert if passed value traits are compatible with the type
BOOST_STATIC_ASSERT((detail::is_same<typename Base::value_traits::value_type, T>::value));
BOOST_MOVABLE_BUT_NOT_COPYABLE(list)
public:
typedef typename Base::value_traits value_traits;
typedef typename Base::iterator iterator;
typedef typename Base::const_iterator const_iterator;
list()
: Base()
{}
explicit list(const value_traits &v_traits)
: Base(v_traits)
{}
template<class Iterator>
list(Iterator b, Iterator e, const value_traits &v_traits = value_traits())
: Base(b, e, v_traits)
{}
list(BOOST_RV_REF(list) x)
: Base(BOOST_MOVE_BASE(Base, x))
{}
list& operator=(BOOST_RV_REF(list) x)
{ return static_cast<list &>(this->Base::operator=(BOOST_MOVE_BASE(Base, x))); }
template <class Cloner, class Disposer>
void clone_from(const list &src, Cloner cloner, Disposer disposer)
{ Base::clone_from(src, cloner, disposer); }
template <class Cloner, class Disposer>
void clone_from(BOOST_RV_REF(list) src, Cloner cloner, Disposer disposer)
{ Base::clone_from(BOOST_MOVE_BASE(Base, src), cloner, disposer); }
static list &container_from_end_iterator(iterator end_iterator)
{ return static_cast<list &>(Base::container_from_end_iterator(end_iterator)); }
static const list &container_from_end_iterator(const_iterator end_iterator)
{ return static_cast<const list &>(Base::container_from_end_iterator(end_iterator)); }
};
#endif
} //namespace intrusive
} //namespace boost
#include <boost/intrusive/detail/config_end.hpp>
#endif //BOOST_INTRUSIVE_LIST_HPP