boost/chrono/detail/inlined/mac/chrono.hpp
// mac/chrono.cpp --------------------------------------------------------------//
// Copyright Beman Dawes 2008
// Copyright 2009-2010 Vicente J. Botet Escriba
// Distributed under the Boost Software License, Version 1.0.
// See http://www.boost.org/LICENSE_1_0.txt
//----------------------------------------------------------------------------//
// Mac //
//----------------------------------------------------------------------------//
#include <sys/time.h> //for gettimeofday and timeval
#include <mach/mach_time.h> // mach_absolute_time, mach_timebase_info_data_t
#include <boost/assert.hpp>
namespace boost
{
namespace chrono
{
// system_clock
// gettimeofday is the most precise "system time" available on this platform.
// It returns the number of microseconds since New Years 1970 in a struct called timeval
// which has a field for seconds and a field for microseconds.
// Fill in the timeval and then convert that to the time_point
system_clock::time_point
system_clock::now() BOOST_NOEXCEPT
{
timeval tv;
gettimeofday(&tv, 0);
return time_point(seconds(tv.tv_sec) + microseconds(tv.tv_usec));
}
#if !defined BOOST_CHRONO_DONT_PROVIDE_HYBRID_ERROR_HANDLING
system_clock::time_point
system_clock::now(system::error_code & ec)
{
timeval tv;
gettimeofday(&tv, 0);
if (!BOOST_CHRONO_IS_THROWS(ec))
{
ec.clear();
}
return time_point(seconds(tv.tv_sec) + microseconds(tv.tv_usec));
}
#endif
// Take advantage of the fact that on this platform time_t is nothing but
// an integral count of seconds since New Years 1970 (same epoch as timeval).
// Just get the duration out of the time_point and truncate it to seconds.
time_t
system_clock::to_time_t(const time_point& t) BOOST_NOEXCEPT
{
return time_t(duration_cast<seconds>(t.time_since_epoch()).count());
}
// Just turn the time_t into a count of seconds and construct a time_point with it.
system_clock::time_point
system_clock::from_time_t(time_t t) BOOST_NOEXCEPT
{
return system_clock::time_point(seconds(t));
}
namespace chrono_detail
{
// steady_clock
// Note, in this implementation steady_clock and high_resolution_clock
// are the same clock. They are both based on mach_absolute_time().
// mach_absolute_time() * MachInfo.numer / MachInfo.denom is the number of
// nanoseconds since the computer booted up. MachInfo.numer and MachInfo.denom
// are run time constants supplied by the OS. This clock has no relationship
// to the Gregorian calendar. It's main use is as a high resolution timer.
// MachInfo.numer / MachInfo.denom is often 1 on the latest equipment. Specialize
// for that case as an optimization.
BOOST_CHRONO_STATIC
steady_clock::rep
steady_simplified()
{
return mach_absolute_time();
}
#if !defined BOOST_CHRONO_DONT_PROVIDE_HYBRID_ERROR_HANDLING
BOOST_CHRONO_STATIC
steady_clock::rep
steady_simplified_ec(system::error_code & ec)
{
if (!BOOST_CHRONO_IS_THROWS(ec))
{
ec.clear();
}
return mach_absolute_time();
}
#endif
BOOST_CHRONO_STATIC
double
compute_steady_factor(kern_return_t& err)
{
mach_timebase_info_data_t MachInfo;
err = mach_timebase_info(&MachInfo);
if ( err != 0 ) {
return 0;
}
return static_cast<double>(MachInfo.numer) / MachInfo.denom;
}
BOOST_CHRONO_STATIC
steady_clock::rep
steady_full()
{
kern_return_t err;
const double factor = chrono_detail::compute_steady_factor(err);
if (err != 0)
{
BOOST_ASSERT(0 && "Boost::Chrono - Internal Error");
}
return static_cast<steady_clock::rep>(mach_absolute_time() * factor);
}
#if !defined BOOST_CHRONO_DONT_PROVIDE_HYBRID_ERROR_HANDLING
BOOST_CHRONO_STATIC
steady_clock::rep
steady_full_ec(system::error_code & ec)
{
kern_return_t err;
const double factor = chrono_detail::compute_steady_factor(err);
if (err != 0)
{
if (BOOST_CHRONO_IS_THROWS(ec))
{
boost::throw_exception(
system::system_error(
err,
BOOST_CHRONO_SYSTEM_CATEGORY,
"chrono::steady_clock" ));
}
else
{
ec.assign( errno, BOOST_CHRONO_SYSTEM_CATEGORY );
return steady_clock::rep();
}
}
if (!BOOST_CHRONO_IS_THROWS(ec))
{
ec.clear();
}
return static_cast<steady_clock::rep>(mach_absolute_time() * factor);
}
#endif
typedef steady_clock::rep (*FP)();
#if !defined BOOST_CHRONO_DONT_PROVIDE_HYBRID_ERROR_HANDLING
typedef steady_clock::rep (*FP_ec)(system::error_code &);
#endif
BOOST_CHRONO_STATIC
FP
init_steady_clock(kern_return_t & err)
{
mach_timebase_info_data_t MachInfo;
err = mach_timebase_info(&MachInfo);
if ( err != 0 )
{
return 0;
}
if (MachInfo.numer == MachInfo.denom)
{
return &chrono_detail::steady_simplified;
}
return &chrono_detail::steady_full;
}
#if !defined BOOST_CHRONO_DONT_PROVIDE_HYBRID_ERROR_HANDLING
BOOST_CHRONO_STATIC
FP_ec
init_steady_clock_ec(kern_return_t & err)
{
mach_timebase_info_data_t MachInfo;
err = mach_timebase_info(&MachInfo);
if ( err != 0 )
{
return 0;
}
if (MachInfo.numer == MachInfo.denom)
{
return &chrono_detail::steady_simplified_ec;
}
return &chrono_detail::steady_full_ec;
}
#endif
}
steady_clock::time_point
steady_clock::now() BOOST_NOEXCEPT
{
kern_return_t err;
chrono_detail::FP fp = chrono_detail::init_steady_clock(err);
if ( err != 0 )
{
BOOST_ASSERT(0 && "Boost::Chrono - Internal Error");
}
return time_point(duration(fp()));
}
#if !defined BOOST_CHRONO_DONT_PROVIDE_HYBRID_ERROR_HANDLING
steady_clock::time_point
steady_clock::now(system::error_code & ec)
{
kern_return_t err;
chrono_detail::FP_ec fp = chrono_detail::init_steady_clock_ec(err);
if ( err != 0 )
{
if (BOOST_CHRONO_IS_THROWS(ec))
{
boost::throw_exception(
system::system_error(
err,
BOOST_CHRONO_SYSTEM_CATEGORY,
"chrono::steady_clock" ));
}
else
{
ec.assign( err, BOOST_CHRONO_SYSTEM_CATEGORY );
return time_point();
}
}
if (!BOOST_CHRONO_IS_THROWS(ec))
{
ec.clear();
}
return time_point(duration(fp(ec)));
}
#endif
} // namespace chrono
} // namespace boost