boost/asio/ssl/detail/io.hpp
//
// ssl/detail/io.hpp
// ~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2018 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_SSL_DETAIL_IO_HPP
#define BOOST_ASIO_SSL_DETAIL_IO_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/config.hpp>
#include <boost/asio/ssl/detail/engine.hpp>
#include <boost/asio/ssl/detail/stream_core.hpp>
#include <boost/asio/write.hpp>
#include <boost/asio/detail/push_options.hpp>
namespace boost {
namespace asio {
namespace ssl {
namespace detail {
template <typename Stream, typename Operation>
std::size_t io(Stream& next_layer, stream_core& core,
const Operation& op, boost::system::error_code& ec)
{
std::size_t bytes_transferred = 0;
do switch (op(core.engine_, ec, bytes_transferred))
{
case engine::want_input_and_retry:
// If the input buffer is empty then we need to read some more data from
// the underlying transport.
if (core.input_.size() == 0)
core.input_ = boost::asio::buffer(core.input_buffer_,
next_layer.read_some(core.input_buffer_, ec));
// Pass the new input data to the engine.
core.input_ = core.engine_.put_input(core.input_);
// Try the operation again.
continue;
case engine::want_output_and_retry:
// Get output data from the engine and write it to the underlying
// transport.
boost::asio::write(next_layer,
core.engine_.get_output(core.output_buffer_), ec);
// Try the operation again.
continue;
case engine::want_output:
// Get output data from the engine and write it to the underlying
// transport.
boost::asio::write(next_layer,
core.engine_.get_output(core.output_buffer_), ec);
// Operation is complete. Return result to caller.
core.engine_.map_error_code(ec);
return bytes_transferred;
default:
// Operation is complete. Return result to caller.
core.engine_.map_error_code(ec);
return bytes_transferred;
} while (!ec);
// Operation failed. Return result to caller.
core.engine_.map_error_code(ec);
return 0;
}
template <typename Stream, typename Operation, typename Handler>
class io_op
{
public:
io_op(Stream& next_layer, stream_core& core,
const Operation& op, Handler& handler)
: next_layer_(next_layer),
core_(core),
op_(op),
start_(0),
want_(engine::want_nothing),
bytes_transferred_(0),
handler_(BOOST_ASIO_MOVE_CAST(Handler)(handler))
{
}
#if defined(BOOST_ASIO_HAS_MOVE)
io_op(const io_op& other)
: next_layer_(other.next_layer_),
core_(other.core_),
op_(other.op_),
start_(other.start_),
want_(other.want_),
ec_(other.ec_),
bytes_transferred_(other.bytes_transferred_),
handler_(other.handler_)
{
}
io_op(io_op&& other)
: next_layer_(other.next_layer_),
core_(other.core_),
op_(BOOST_ASIO_MOVE_CAST(Operation)(other.op_)),
start_(other.start_),
want_(other.want_),
ec_(other.ec_),
bytes_transferred_(other.bytes_transferred_),
handler_(BOOST_ASIO_MOVE_CAST(Handler)(other.handler_))
{
}
#endif // defined(BOOST_ASIO_HAS_MOVE)
void operator()(boost::system::error_code ec,
std::size_t bytes_transferred = ~std::size_t(0), int start = 0)
{
switch (start_ = start)
{
case 1: // Called after at least one async operation.
do
{
switch (want_ = op_(core_.engine_, ec_, bytes_transferred_))
{
case engine::want_input_and_retry:
// If the input buffer already has data in it we can pass it to the
// engine and then retry the operation immediately.
if (core_.input_.size() != 0)
{
core_.input_ = core_.engine_.put_input(core_.input_);
continue;
}
// The engine wants more data to be read from input. However, we
// cannot allow more than one read operation at a time on the
// underlying transport. The pending_read_ timer's expiry is set to
// pos_infin if a read is in progress, and neg_infin otherwise.
if (core_.expiry(core_.pending_read_) == core_.neg_infin())
{
// Prevent other read operations from being started.
core_.pending_read_.expires_at(core_.pos_infin());
// Start reading some data from the underlying transport.
next_layer_.async_read_some(
boost::asio::buffer(core_.input_buffer_),
BOOST_ASIO_MOVE_CAST(io_op)(*this));
}
else
{
// Wait until the current read operation completes.
core_.pending_read_.async_wait(BOOST_ASIO_MOVE_CAST(io_op)(*this));
}
// Yield control until asynchronous operation completes. Control
// resumes at the "default:" label below.
return;
case engine::want_output_and_retry:
case engine::want_output:
// The engine wants some data to be written to the output. However, we
// cannot allow more than one write operation at a time on the
// underlying transport. The pending_write_ timer's expiry is set to
// pos_infin if a write is in progress, and neg_infin otherwise.
if (core_.expiry(core_.pending_write_) == core_.neg_infin())
{
// Prevent other write operations from being started.
core_.pending_write_.expires_at(core_.pos_infin());
// Start writing all the data to the underlying transport.
boost::asio::async_write(next_layer_,
core_.engine_.get_output(core_.output_buffer_),
BOOST_ASIO_MOVE_CAST(io_op)(*this));
}
else
{
// Wait until the current write operation completes.
core_.pending_write_.async_wait(BOOST_ASIO_MOVE_CAST(io_op)(*this));
}
// Yield control until asynchronous operation completes. Control
// resumes at the "default:" label below.
return;
default:
// The SSL operation is done and we can invoke the handler, but we
// have to keep in mind that this function might be being called from
// the async operation's initiating function. In this case we're not
// allowed to call the handler directly. Instead, issue a zero-sized
// read so the handler runs "as-if" posted using io_context::post().
if (start)
{
next_layer_.async_read_some(
boost::asio::buffer(core_.input_buffer_, 0),
BOOST_ASIO_MOVE_CAST(io_op)(*this));
// Yield control until asynchronous operation completes. Control
// resumes at the "default:" label below.
return;
}
else
{
// Continue on to run handler directly.
break;
}
}
default:
if (bytes_transferred == ~std::size_t(0))
bytes_transferred = 0; // Timer cancellation, no data transferred.
else if (!ec_)
ec_ = ec;
switch (want_)
{
case engine::want_input_and_retry:
// Add received data to the engine's input.
core_.input_ = boost::asio::buffer(
core_.input_buffer_, bytes_transferred);
core_.input_ = core_.engine_.put_input(core_.input_);
// Release any waiting read operations.
core_.pending_read_.expires_at(core_.neg_infin());
// Try the operation again.
continue;
case engine::want_output_and_retry:
// Release any waiting write operations.
core_.pending_write_.expires_at(core_.neg_infin());
// Try the operation again.
continue;
case engine::want_output:
// Release any waiting write operations.
core_.pending_write_.expires_at(core_.neg_infin());
// Fall through to call handler.
default:
// Pass the result to the handler.
op_.call_handler(handler_,
core_.engine_.map_error_code(ec_),
ec_ ? 0 : bytes_transferred_);
// Our work here is done.
return;
}
} while (!ec_);
// Operation failed. Pass the result to the handler.
op_.call_handler(handler_, core_.engine_.map_error_code(ec_), 0);
}
}
//private:
Stream& next_layer_;
stream_core& core_;
Operation op_;
int start_;
engine::want want_;
boost::system::error_code ec_;
std::size_t bytes_transferred_;
Handler handler_;
};
template <typename Stream, typename Operation, typename Handler>
inline void* asio_handler_allocate(std::size_t size,
io_op<Stream, Operation, Handler>* this_handler)
{
return boost_asio_handler_alloc_helpers::allocate(
size, this_handler->handler_);
}
template <typename Stream, typename Operation, typename Handler>
inline void asio_handler_deallocate(void* pointer, std::size_t size,
io_op<Stream, Operation, Handler>* this_handler)
{
boost_asio_handler_alloc_helpers::deallocate(
pointer, size, this_handler->handler_);
}
template <typename Stream, typename Operation, typename Handler>
inline bool asio_handler_is_continuation(
io_op<Stream, Operation, Handler>* this_handler)
{
return this_handler->start_ == 0 ? true
: boost_asio_handler_cont_helpers::is_continuation(this_handler->handler_);
}
template <typename Function, typename Stream,
typename Operation, typename Handler>
inline void asio_handler_invoke(Function& function,
io_op<Stream, Operation, Handler>* this_handler)
{
boost_asio_handler_invoke_helpers::invoke(
function, this_handler->handler_);
}
template <typename Function, typename Stream,
typename Operation, typename Handler>
inline void asio_handler_invoke(const Function& function,
io_op<Stream, Operation, Handler>* this_handler)
{
boost_asio_handler_invoke_helpers::invoke(
function, this_handler->handler_);
}
template <typename Stream, typename Operation, typename Handler>
inline void async_io(Stream& next_layer, stream_core& core,
const Operation& op, Handler& handler)
{
io_op<Stream, Operation, Handler>(
next_layer, core, op, handler)(
boost::system::error_code(), 0, 1);
}
} // namespace detail
} // namespace ssl
template <typename Stream, typename Operation,
typename Handler, typename Allocator>
struct associated_allocator<
ssl::detail::io_op<Stream, Operation, Handler>, Allocator>
{
typedef typename associated_allocator<Handler, Allocator>::type type;
static type get(const ssl::detail::io_op<Stream, Operation, Handler>& h,
const Allocator& a = Allocator()) BOOST_ASIO_NOEXCEPT
{
return associated_allocator<Handler, Allocator>::get(h.handler_, a);
}
};
template <typename Stream, typename Operation,
typename Handler, typename Executor>
struct associated_executor<
ssl::detail::io_op<Stream, Operation, Handler>, Executor>
{
typedef typename associated_executor<Handler, Executor>::type type;
static type get(const ssl::detail::io_op<Stream, Operation, Handler>& h,
const Executor& ex = Executor()) BOOST_ASIO_NOEXCEPT
{
return associated_executor<Handler, Executor>::get(h.handler_, ex);
}
};
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_SSL_DETAIL_IO_HPP