boost/thread/pthread/condition_variable.hpp
#ifndef BOOST_THREAD_CONDITION_VARIABLE_PTHREAD_HPP
#define BOOST_THREAD_CONDITION_VARIABLE_PTHREAD_HPP
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// (C) Copyright 2007-10 Anthony Williams
// (C) Copyright 2011-2012 Vicente J. Botet Escriba
#include <boost/thread/detail/platform_time.hpp>
#include <boost/thread/pthread/pthread_mutex_scoped_lock.hpp>
#include <boost/thread/pthread/pthread_helpers.hpp>
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
#include <boost/thread/pthread/thread_data.hpp>
#endif
#include <boost/thread/pthread/condition_variable_fwd.hpp>
#ifdef BOOST_THREAD_USES_CHRONO
#include <boost/chrono/system_clocks.hpp>
#include <boost/chrono/ceil.hpp>
#endif
#include <boost/thread/detail/delete.hpp>
#include <algorithm>
#include <boost/config/abi_prefix.hpp>
namespace boost
{
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
namespace this_thread
{
void BOOST_THREAD_DECL interruption_point();
}
#endif
namespace thread_cv_detail
{
template<typename MutexType>
struct lock_on_exit
{
MutexType* m;
lock_on_exit():
m(0)
{}
void activate(MutexType& m_)
{
m_.unlock();
m=&m_;
}
void deactivate()
{
if (m)
{
m->lock();
}
m = 0;
}
~lock_on_exit() BOOST_NOEXCEPT_IF(false)
{
if (m)
{
m->lock();
}
}
};
}
inline void condition_variable::wait(unique_lock<mutex>& m)
{
#if defined BOOST_THREAD_THROW_IF_PRECONDITION_NOT_SATISFIED
if(! m.owns_lock())
{
boost::throw_exception(condition_error(-1, "boost::condition_variable::wait() failed precondition mutex not owned"));
}
#endif
int res=0;
{
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
thread_cv_detail::lock_on_exit<unique_lock<mutex> > guard;
detail::interruption_checker check_for_interruption(&internal_mutex,&cond);
pthread_mutex_t* the_mutex = &internal_mutex;
guard.activate(m);
res = pthread_cond_wait(&cond,the_mutex);
check_for_interruption.unlock_if_locked();
guard.deactivate();
#else
pthread_mutex_t* the_mutex = m.mutex()->native_handle();
res = pthread_cond_wait(&cond,the_mutex);
#endif
}
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
this_thread::interruption_point();
#endif
if(res && res != EINTR)
{
boost::throw_exception(condition_error(res, "boost::condition_variable::wait failed in pthread_cond_wait"));
}
}
// When this function returns true:
// * A notification (or sometimes a spurious OS signal) has been received
// * Do not assume that the timeout has not been reached
// * Do not assume that the predicate has been changed
//
// When this function returns false:
// * The timeout has been reached
// * Do not assume that a notification has not been received
// * Do not assume that the predicate has not been changed
inline bool condition_variable::do_wait_until(
unique_lock<mutex>& m,
detail::internal_platform_timepoint const &timeout)
{
#if defined BOOST_THREAD_THROW_IF_PRECONDITION_NOT_SATISFIED
if (!m.owns_lock())
{
boost::throw_exception(condition_error(EPERM, "boost::condition_variable::do_wait_until() failed precondition mutex not owned"));
}
#endif
int cond_res;
{
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
thread_cv_detail::lock_on_exit<unique_lock<mutex> > guard;
detail::interruption_checker check_for_interruption(&internal_mutex,&cond);
pthread_mutex_t* the_mutex = &internal_mutex;
guard.activate(m);
cond_res=pthread_cond_timedwait(&cond,the_mutex,&timeout.getTs());
check_for_interruption.unlock_if_locked();
guard.deactivate();
#else
pthread_mutex_t* the_mutex = m.mutex()->native_handle();
cond_res=pthread_cond_timedwait(&cond,the_mutex,&timeout.getTs());
#endif
}
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
this_thread::interruption_point();
#endif
if(cond_res==ETIMEDOUT)
{
return false;
}
if(cond_res)
{
boost::throw_exception(condition_error(cond_res, "boost::condition_variable::do_wait_until failed in pthread_cond_timedwait"));
}
return true;
}
inline void condition_variable::notify_one() BOOST_NOEXCEPT
{
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
boost::pthread::pthread_mutex_scoped_lock internal_lock(&internal_mutex);
#endif
BOOST_VERIFY(!pthread_cond_signal(&cond));
}
inline void condition_variable::notify_all() BOOST_NOEXCEPT
{
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
boost::pthread::pthread_mutex_scoped_lock internal_lock(&internal_mutex);
#endif
BOOST_VERIFY(!pthread_cond_broadcast(&cond));
}
class condition_variable_any
{
pthread_mutex_t internal_mutex;
pthread_cond_t cond;
public:
BOOST_THREAD_NO_COPYABLE(condition_variable_any)
condition_variable_any()
{
int const res=pthread_mutex_init(&internal_mutex,NULL);
if(res)
{
boost::throw_exception(thread_resource_error(res, "boost::condition_variable_any::condition_variable_any() failed in pthread_mutex_init"));
}
int const res2 = pthread::cond_init(cond);
if(res2)
{
BOOST_VERIFY(!pthread_mutex_destroy(&internal_mutex));
boost::throw_exception(thread_resource_error(res2, "boost::condition_variable_any::condition_variable_any() failed in pthread::cond_init"));
}
}
~condition_variable_any()
{
BOOST_VERIFY(!pthread_mutex_destroy(&internal_mutex));
BOOST_VERIFY(!pthread_cond_destroy(&cond));
}
template<typename lock_type>
void wait(lock_type& m)
{
int res=0;
{
thread_cv_detail::lock_on_exit<lock_type> guard;
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
detail::interruption_checker check_for_interruption(&internal_mutex,&cond);
#else
boost::pthread::pthread_mutex_scoped_lock check_for_interruption(&internal_mutex);
#endif
guard.activate(m);
res=pthread_cond_wait(&cond,&internal_mutex);
check_for_interruption.unlock_if_locked();
guard.deactivate();
}
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
this_thread::interruption_point();
#endif
if(res)
{
boost::throw_exception(condition_error(res, "boost::condition_variable_any::wait() failed in pthread_cond_wait"));
}
}
template<typename lock_type,typename predicate_type>
void wait(lock_type& m,predicate_type pred)
{
while (!pred())
{
wait(m);
}
}
#if defined BOOST_THREAD_USES_DATETIME
template<typename lock_type>
bool timed_wait(lock_type& m,boost::system_time const& abs_time)
{
#if defined BOOST_THREAD_WAIT_BUG
const detail::real_platform_timepoint ts(abs_time + BOOST_THREAD_WAIT_BUG);
#else
const detail::real_platform_timepoint ts(abs_time);
#endif
#if defined BOOST_THREAD_INTERNAL_CLOCK_IS_MONO
// The system time may jump while this function is waiting. To compensate for this and time
// out near the correct time, we could call do_wait_until() in a loop with a short timeout
// and recheck the time remaining each time through the loop. However, because we can't
// check the predicate each time do_wait_until() completes, this introduces the possibility
// of not exiting the function when a notification occurs, since do_wait_until() may report
// that it timed out even though a notification was received. The best this function can do
// is report correctly whether or not it reached the timeout time.
const detail::platform_duration d(ts - detail::real_platform_clock::now());
do_wait_until(m, detail::internal_platform_clock::now() + d);
return ts > detail::real_platform_clock::now();
#else
return do_wait_until(m, ts);
#endif
}
template<typename lock_type>
bool timed_wait(lock_type& m,::boost::xtime const& abs_time)
{
return timed_wait(m,system_time(abs_time));
}
template<typename lock_type,typename duration_type>
bool timed_wait(lock_type& m,duration_type const& wait_duration)
{
if (wait_duration.is_pos_infinity())
{
wait(m);
return true;
}
if (wait_duration.is_special())
{
return true;
}
detail::platform_duration d(wait_duration);
#if defined(BOOST_THREAD_HAS_MONO_CLOCK) && !defined(BOOST_THREAD_INTERNAL_CLOCK_IS_MONO)
// The system time may jump while this function is waiting. To compensate for this and time
// out near the correct time, we could call do_wait_until() in a loop with a short timeout
// and recheck the time remaining each time through the loop. However, because we can't
// check the predicate each time do_wait_until() completes, this introduces the possibility
// of not exiting the function when a notification occurs, since do_wait_until() may report
// that it timed out even though a notification was received. The best this function can do
// is report correctly whether or not it reached the timeout time.
const detail::mono_platform_timepoint ts(detail::mono_platform_clock::now() + d);
do_wait_until(m, detail::internal_platform_clock::now() + d);
return ts > detail::mono_platform_clock::now();
#else
return do_wait_until(m, detail::internal_platform_clock::now() + d);
#endif
}
template<typename lock_type,typename predicate_type>
bool timed_wait(lock_type& m,boost::system_time const& abs_time, predicate_type pred)
{
#if defined BOOST_THREAD_WAIT_BUG
const detail::real_platform_timepoint ts(abs_time + BOOST_THREAD_WAIT_BUG);
#else
const detail::real_platform_timepoint ts(abs_time);
#endif
while (!pred())
{
#if defined BOOST_THREAD_INTERNAL_CLOCK_IS_MONO
// The system time may jump while this function is waiting. To compensate for this
// and time out near the correct time, we call do_wait_until() in a loop with a
// short timeout and recheck the time remaining each time through the loop.
detail::platform_duration d(ts - detail::real_platform_clock::now());
if (d <= detail::platform_duration::zero()) break; // timeout occurred
d = (std::min)(d, detail::platform_milliseconds(BOOST_THREAD_POLL_INTERVAL_MILLISECONDS));
do_wait_until(m, detail::internal_platform_clock::now() + d);
#else
if (!do_wait_until(m, ts)) break; // timeout occurred
#endif
}
return pred();
}
template<typename lock_type,typename predicate_type>
bool timed_wait(lock_type& m,::boost::xtime const& abs_time, predicate_type pred)
{
return timed_wait(m,system_time(abs_time),pred);
}
template<typename lock_type,typename duration_type,typename predicate_type>
bool timed_wait(lock_type& m,duration_type const& wait_duration,predicate_type pred)
{
if (wait_duration.is_pos_infinity())
{
while (!pred())
{
wait(m);
}
return true;
}
if (wait_duration.is_special())
{
return pred();
}
detail::platform_duration d(wait_duration);
#if defined(BOOST_THREAD_HAS_MONO_CLOCK) && !defined(BOOST_THREAD_INTERNAL_CLOCK_IS_MONO)
// The system time may jump while this function is waiting. To compensate for this
// and time out near the correct time, we call do_wait_until() in a loop with a
// short timeout and recheck the time remaining each time through the loop.
const detail::mono_platform_timepoint ts(detail::mono_platform_clock::now() + d);
while (!pred())
{
if (d <= detail::platform_duration::zero()) break; // timeout occurred
d = (std::min)(d, detail::platform_milliseconds(BOOST_THREAD_POLL_INTERVAL_MILLISECONDS));
do_wait_until(m, detail::internal_platform_clock::now() + d);
d = ts - detail::mono_platform_clock::now();
}
#else
const detail::internal_platform_timepoint ts(detail::internal_platform_clock::now() + d);
while (!pred())
{
if (!do_wait_until(m, ts)) break; // timeout occurred
}
#endif
return pred();
}
#endif
#ifdef BOOST_THREAD_USES_CHRONO
template <class lock_type,class Duration>
cv_status
wait_until(
lock_type& lock,
const chrono::time_point<detail::internal_chrono_clock, Duration>& t)
{
const boost::detail::internal_platform_timepoint ts(t);
if (do_wait_until(lock, ts)) return cv_status::no_timeout;
else return cv_status::timeout;
}
template <class lock_type, class Clock, class Duration>
cv_status
wait_until(
lock_type& lock,
const chrono::time_point<Clock, Duration>& t)
{
// The system time may jump while this function is waiting. To compensate for this and time
// out near the correct time, we could call do_wait_until() in a loop with a short timeout
// and recheck the time remaining each time through the loop. However, because we can't
// check the predicate each time do_wait_until() completes, this introduces the possibility
// of not exiting the function when a notification occurs, since do_wait_until() may report
// that it timed out even though a notification was received. The best this function can do
// is report correctly whether or not it reached the timeout time.
typedef typename common_type<Duration, typename Clock::duration>::type common_duration;
common_duration d(t - Clock::now());
do_wait_until(lock, detail::internal_chrono_clock::now() + d);
if (t > Clock::now()) return cv_status::no_timeout;
else return cv_status::timeout;
}
template <class lock_type, class Rep, class Period>
cv_status
wait_for(
lock_type& lock,
const chrono::duration<Rep, Period>& d)
{
return wait_until(lock, chrono::steady_clock::now() + d);
}
template <class lock_type, class Duration, class Predicate>
bool
wait_until(
lock_type& lock,
const chrono::time_point<detail::internal_chrono_clock, Duration>& t,
Predicate pred)
{
const detail::internal_platform_timepoint ts(t);
while (!pred())
{
if (!do_wait_until(lock, ts)) break; // timeout occurred
}
return pred();
}
template <class lock_type, class Clock, class Duration, class Predicate>
bool
wait_until(
lock_type& lock,
const chrono::time_point<Clock, Duration>& t,
Predicate pred)
{
// The system time may jump while this function is waiting. To compensate for this
// and time out near the correct time, we call do_wait_until() in a loop with a
// short timeout and recheck the time remaining each time through the loop.
typedef typename common_type<Duration, typename Clock::duration>::type common_duration;
while (!pred())
{
common_duration d(t - Clock::now());
if (d <= common_duration::zero()) break; // timeout occurred
d = (std::min)(d, common_duration(chrono::milliseconds(BOOST_THREAD_POLL_INTERVAL_MILLISECONDS)));
do_wait_until(lock, detail::internal_platform_clock::now() + detail::platform_duration(d));
}
return pred();
}
template <class lock_type, class Rep, class Period, class Predicate>
bool
wait_for(
lock_type& lock,
const chrono::duration<Rep, Period>& d,
Predicate pred)
{
return wait_until(lock, chrono::steady_clock::now() + d, boost::move(pred));
}
#endif
void notify_one() BOOST_NOEXCEPT
{
boost::pthread::pthread_mutex_scoped_lock internal_lock(&internal_mutex);
BOOST_VERIFY(!pthread_cond_signal(&cond));
}
void notify_all() BOOST_NOEXCEPT
{
boost::pthread::pthread_mutex_scoped_lock internal_lock(&internal_mutex);
BOOST_VERIFY(!pthread_cond_broadcast(&cond));
}
private:
// When this function returns true:
// * A notification (or sometimes a spurious OS signal) has been received
// * Do not assume that the timeout has not been reached
// * Do not assume that the predicate has been changed
//
// When this function returns false:
// * The timeout has been reached
// * Do not assume that a notification has not been received
// * Do not assume that the predicate has not been changed
template <class lock_type>
bool do_wait_until(
lock_type& m,
detail::internal_platform_timepoint const &timeout)
{
int res=0;
{
thread_cv_detail::lock_on_exit<lock_type> guard;
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
detail::interruption_checker check_for_interruption(&internal_mutex,&cond);
#else
boost::pthread::pthread_mutex_scoped_lock check_for_interruption(&internal_mutex);
#endif
guard.activate(m);
res=pthread_cond_timedwait(&cond,&internal_mutex,&timeout.getTs());
check_for_interruption.unlock_if_locked();
guard.deactivate();
}
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
this_thread::interruption_point();
#endif
if(res==ETIMEDOUT)
{
return false;
}
if(res)
{
boost::throw_exception(condition_error(res, "boost::condition_variable_any::do_wait_until() failed in pthread_cond_timedwait"));
}
return true;
}
};
}
#include <boost/config/abi_suffix.hpp>
#endif