Boost C++ Libraries

...one of the most highly regarded and expertly designed C++ library projects in the world. Herb Sutter and Andrei Alexandrescu, C++ Coding Standards

This is the documentation for an old version of Boost. Click here to view this page for the latest version.

Level 3 BLAS



Functions

template<class M1, class T, class M2, class M3> M1 & boost::numeric::ublas::blas_3::tmm (M1 &m1, const T &t, const M2 &m2, const M3 &m3)
 triangular matrix multiplication

template<class M1, class T, class M2, class C> M1 & boost::numeric::ublas::blas_3::tsm (M1 &m1, const T &t, const M2 &m2, C)
 triangular solve m2 * x = t * m1 in place, m2 is a triangular matrix

template<class M1, class T1, class T2, class M2, class M3> M1 & boost::numeric::ublas::blas_3::gmm (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3)
 general matrix multiplication

template<class M1, class T1, class T2, class M2> M1 & boost::numeric::ublas::blas_3::srk (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2)
 symmetric rank k update: m1 = t * m1 + t2 * (m2 * m2T)

template<class M1, class T1, class T2, class M2> M1 & boost::numeric::ublas::blas_3::hrk (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2)
 hermitian rank k update: m1 = t * m1 + t2 * (m2 * m2H)

template<class M1, class T1, class T2, class M2, class M3> M1 & boost::numeric::ublas::blas_3::sr2k (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3)
 generalized symmetric rank k update: m1 = t1 * m1 + t2 * (m2 * m3T) + t2 * (m3 * m2T)

template<class M1, class T1, class T2, class M2, class M3> M1 & boost::numeric::ublas::blas_3::hr2k (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3)
 generalized hermitian rank k update: m1 = t1 * m1 + t2 * (m2 * m3H) + (m3 * (t2 * m2)H)

template<class M, class E1, class E2> BOOST_UBLAS_INLINE M & boost::numeric::ublas::axpy_prod (const matrix_expression< E1 > &e1, const matrix_expression< E2 > &e2, M &m, bool init=true)
 computes M += A X or M = A X in an optimized fashion.

template<class M, class E1, class E2> BOOST_UBLAS_INLINE M & boost::numeric::ublas::opb_prod (const matrix_expression< E1 > &e1, const matrix_expression< E2 > &e2, M &m, bool init=true)
 computes M += A X or M = A X in an optimized fashion.


Function Documentation

M1& tmm M1 &  m1,
const T &  t,
const M2 &  m2,
const M3 &  m3
 

triangular matrix multiplication

M1& tsm M1 &  m1,
const T &  t,
const M2 &  m2,
 

triangular solve m2 * x = t * m1 in place, m2 is a triangular matrix

M1& gmm M1 &  m1,
const T1 &  t1,
const T2 &  t2,
const M2 &  m2,
const M3 &  m3
 

general matrix multiplication

M1& srk M1 &  m1,
const T1 &  t1,
const T2 &  t2,
const M2 &  m2
 

symmetric rank k update: m1 = t * m1 + t2 * (m2 * m2T)

Todo:
use opb_prod()
M1& hrk M1 &  m1,
const T1 &  t1,
const T2 &  t2,
const M2 &  m2
 

hermitian rank k update: m1 = t * m1 + t2 * (m2 * m2H)

Todo:
use opb_prod()
M1& sr2k M1 &  m1,
const T1 &  t1,
const T2 &  t2,
const M2 &  m2,
const M3 &  m3
 

generalized symmetric rank k update: m1 = t1 * m1 + t2 * (m2 * m3T) + t2 * (m3 * m2T)

Todo:
use opb_prod()
M1& hr2k M1 &  m1,
const T1 &  t1,
const T2 &  t2,
const M2 &  m2,
const M3 &  m3
 

generalized hermitian rank k update: m1 = t1 * m1 + t2 * (m2 * m3H) + (m3 * (t2 * m2)H)

Todo:
use opb_prod()

Copyright (©) 2000-2004 Michael Stevens, Mathias Koch, Joerg Walter, Gunter Winkler
Use, modification and distribution are subject to the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt).