boost/heap/d_ary_heap.hpp
// // boost heap: d-ary heap as container adaptor
//
// Copyright (C) 2010 Tim Blechmann
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_HEAP_D_ARY_HEAP_HPP
#define BOOST_HEAP_D_ARY_HEAP_HPP
#include <algorithm>
#include <utility>
#include <vector>
#include <boost/assert.hpp>
#include <boost/mem_fn.hpp>
#include <boost/heap/detail/heap_comparison.hpp>
#include <boost/heap/detail/ordered_adaptor_iterator.hpp>
#include <boost/heap/detail/stable_heap.hpp>
#include <boost/heap/detail/mutable_heap.hpp>
#ifdef BOOST_HAS_PRAGMA_ONCE
#pragma once
#endif
#ifndef BOOST_DOXYGEN_INVOKED
#ifdef BOOST_HEAP_SANITYCHECKS
#define BOOST_HEAP_ASSERT BOOST_ASSERT
#else
#define BOOST_HEAP_ASSERT(expression)
#endif
#endif
namespace boost {
namespace heap {
namespace detail {
struct nop_index_updater
{
template <typename T>
static void run(T &, std::size_t)
{}
};
typedef parameter::parameters<boost::parameter::required<tag::arity>,
boost::parameter::optional<tag::allocator>,
boost::parameter::optional<tag::compare>,
boost::parameter::optional<tag::stable>,
boost::parameter::optional<tag::stability_counter_type>,
boost::parameter::optional<tag::constant_time_size>
> d_ary_heap_signature;
/* base class for d-ary heap */
template <typename T,
class BoundArgs,
class IndexUpdater>
class d_ary_heap:
private make_heap_base<T, BoundArgs, false>::type
{
typedef make_heap_base<T, BoundArgs, false> heap_base_maker;
typedef typename heap_base_maker::type super_t;
typedef typename super_t::internal_type internal_type;
#ifdef BOOST_NO_CXX11_ALLOCATOR
typedef typename heap_base_maker::allocator_argument::template rebind<internal_type>::other internal_type_allocator;
#else
typedef typename std::allocator_traits<typename heap_base_maker::allocator_argument>::template rebind_alloc<internal_type> internal_type_allocator;
#endif
typedef std::vector<internal_type, internal_type_allocator> container_type;
typedef typename container_type::const_iterator container_iterator;
typedef IndexUpdater index_updater;
container_type q_;
static const unsigned int D = parameter::binding<BoundArgs, tag::arity>::type::value;
template <typename Heap1, typename Heap2>
friend struct heap_merge_emulate;
struct implementation_defined:
extract_allocator_types<typename heap_base_maker::allocator_argument>
{
typedef T value_type;
typedef typename detail::extract_allocator_types<typename heap_base_maker::allocator_argument>::size_type size_type;
typedef typename heap_base_maker::compare_argument value_compare;
typedef typename heap_base_maker::allocator_argument allocator_type;
struct ordered_iterator_dispatcher
{
static size_type max_index(const d_ary_heap * heap)
{
return heap->q_.size() - 1;
}
static bool is_leaf(const d_ary_heap * heap, size_type index)
{
return !heap->not_leaf(index);
}
static std::pair<size_type, size_type> get_child_nodes(const d_ary_heap * heap, size_type index)
{
BOOST_HEAP_ASSERT(!is_leaf(heap, index));
return std::make_pair(d_ary_heap::first_child_index(index),
heap->last_child_index(index));
}
static internal_type const & get_internal_value(const d_ary_heap * heap, size_type index)
{
return heap->q_[index];
}
static value_type const & get_value(internal_type const & arg)
{
return super_t::get_value(arg);
}
};
typedef detail::ordered_adaptor_iterator<const value_type,
internal_type,
d_ary_heap,
allocator_type,
typename super_t::internal_compare,
ordered_iterator_dispatcher
> ordered_iterator;
typedef detail::stable_heap_iterator<const value_type, container_iterator, super_t> iterator;
typedef iterator const_iterator;
typedef void * handle_type;
};
typedef typename implementation_defined::ordered_iterator_dispatcher ordered_iterator_dispatcher;
public:
typedef T value_type;
typedef typename implementation_defined::size_type size_type;
typedef typename implementation_defined::difference_type difference_type;
typedef typename implementation_defined::value_compare value_compare;
typedef typename implementation_defined::allocator_type allocator_type;
typedef typename implementation_defined::reference reference;
typedef typename implementation_defined::const_reference const_reference;
typedef typename implementation_defined::pointer pointer;
typedef typename implementation_defined::const_pointer const_pointer;
typedef typename implementation_defined::iterator iterator;
typedef typename implementation_defined::const_iterator const_iterator;
typedef typename implementation_defined::ordered_iterator ordered_iterator;
typedef typename implementation_defined::handle_type handle_type;
static const bool is_stable = extract_stable<BoundArgs>::value;
explicit d_ary_heap(value_compare const & cmp = value_compare()):
super_t(cmp)
{}
d_ary_heap(d_ary_heap const & rhs):
super_t(rhs), q_(rhs.q_)
{}
#ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
d_ary_heap(d_ary_heap && rhs):
super_t(std::move(rhs)), q_(std::move(rhs.q_))
{}
d_ary_heap & operator=(d_ary_heap && rhs)
{
super_t::operator=(std::move(rhs));
q_ = std::move(rhs.q_);
return *this;
}
#endif
d_ary_heap & operator=(d_ary_heap const & rhs)
{
static_cast<super_t&>(*this) = static_cast<super_t const &>(rhs);
q_ = rhs.q_;
return *this;
}
bool empty(void) const
{
return q_.empty();
}
size_type size(void) const
{
return q_.size();
}
size_type max_size(void) const
{
return q_.max_size();
}
void clear(void)
{
q_.clear();
}
allocator_type get_allocator(void) const
{
return q_.get_allocator();
}
value_type const & top(void) const
{
BOOST_ASSERT(!empty());
return super_t::get_value(q_.front());
}
void push(value_type const & v)
{
q_.push_back(super_t::make_node(v));
reset_index(size() - 1, size() - 1);
siftup(q_.size() - 1);
}
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES) && !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
template <class... Args>
void emplace(Args&&... args)
{
q_.emplace_back(super_t::make_node(std::forward<Args>(args)...));
reset_index(size() - 1, size() - 1);
siftup(q_.size() - 1);
}
#endif
void pop(void)
{
BOOST_ASSERT(!empty());
std::swap(q_.front(), q_.back());
q_.pop_back();
if (q_.empty())
return;
reset_index(0, 0);
siftdown(0);
}
void swap(d_ary_heap & rhs)
{
super_t::swap(rhs);
q_.swap(rhs.q_);
}
iterator begin(void) const
{
return iterator(q_.begin());
}
iterator end(void) const
{
return iterator(q_.end());
}
ordered_iterator ordered_begin(void) const
{
return ordered_iterator(0, this, super_t::get_internal_cmp());
}
ordered_iterator ordered_end(void) const
{
return ordered_iterator(size(), this, super_t::get_internal_cmp());
}
void reserve (size_type element_count)
{
q_.reserve(element_count);
}
value_compare const & value_comp(void) const
{
return super_t::value_comp();
}
private:
void reset_index(size_type index, size_type new_index)
{
BOOST_HEAP_ASSERT(index < q_.size());
index_updater::run(q_[index], new_index);
}
void siftdown(size_type index)
{
while (not_leaf(index)) {
size_type max_child_index = top_child_index(index);
if (!super_t::operator()(q_[max_child_index], q_[index])) {
reset_index(index, max_child_index);
reset_index(max_child_index, index);
std::swap(q_[max_child_index], q_[index]);
index = max_child_index;
}
else
return;
}
}
/* returns new index */
void siftup(size_type index)
{
while (index != 0) {
size_type parent = parent_index(index);
if (super_t::operator()(q_[parent], q_[index])) {
reset_index(index, parent);
reset_index(parent, index);
std::swap(q_[parent], q_[index]);
index = parent;
}
else
return;
}
}
bool not_leaf(size_type index) const
{
const size_t first_child = first_child_index(index);
return first_child < q_.size();
}
size_type top_child_index(size_type index) const
{
// invariant: index is not a leaf, so the iterator range is not empty
const size_t first_index = first_child_index(index);
typedef typename container_type::const_iterator container_iterator;
const container_iterator first_child = q_.begin() + first_index;
const container_iterator end = q_.end();
const size_type max_elements = std::distance(first_child, end);
const container_iterator last_child = (max_elements > D) ? first_child + D
: end;
const container_iterator min_element = std::max_element(first_child, last_child, static_cast<super_t const &>(*this));
return min_element - q_.begin();
}
static size_type parent_index(size_type index)
{
return (index - 1) / D;
}
static size_type first_child_index(size_type index)
{
return index * D + 1;
}
size_type last_child_index(size_type index) const
{
const size_t first_index = first_child_index(index);
const size_type last_index = (std::min)(first_index + D - 1, size() - 1);
return last_index;
}
template<typename U,
typename V,
typename W,
typename X>
struct rebind {
typedef d_ary_heap<U, typename d_ary_heap_signature::bind<boost::heap::stable<heap_base_maker::is_stable>,
boost::heap::stability_counter_type<typename heap_base_maker::stability_counter_type>,
boost::heap::arity<D>,
boost::heap::compare<V>,
boost::heap::allocator<W>
>::type,
X
> other;
};
template <class U> friend class priority_queue_mutable_wrapper;
void update(size_type index)
{
if (index == 0) {
siftdown(index);
return;
}
size_type parent = parent_index(index);
if (super_t::operator()(q_[parent], q_[index]))
siftup(index);
else
siftdown(index);
}
void erase(size_type index)
{
while (index != 0)
{
size_type parent = parent_index(index);
reset_index(index, parent);
reset_index(parent, index);
std::swap(q_[parent], q_[index]);
index = parent;
}
pop();
}
void increase(size_type index)
{
siftup(index);
}
void decrease(size_type index)
{
siftdown(index);
}
};
template <typename T, typename BoundArgs>
struct select_dary_heap
{
static const bool is_mutable = extract_mutable<BoundArgs>::value;
typedef typename boost::conditional< is_mutable,
priority_queue_mutable_wrapper<d_ary_heap<T, BoundArgs, nop_index_updater > >,
d_ary_heap<T, BoundArgs, nop_index_updater >
>::type type;
};
} /* namespace detail */
/**
* \class d_ary_heap
* \brief d-ary heap class
*
* This class implements an immutable priority queue. Internally, the d-ary heap is represented
* as dynamically sized array (std::vector), that directly stores the values.
*
* The template parameter T is the type to be managed by the container.
* The user can specify additional options and if no options are provided default options are used.
*
* The container supports the following options:
* - \c boost::heap::arity<>, required
* - \c boost::heap::compare<>, defaults to \c compare<std::less<T> >
* - \c boost::heap::stable<>, defaults to \c stable<false>
* - \c boost::heap::stability_counter_type<>, defaults to \c stability_counter_type<boost::uintmax_t>
* - \c boost::heap::allocator<>, defaults to \c allocator<std::allocator<T> >
* - \c boost::heap::mutable_<>, defaults to \c mutable_<false>
*
*/
#ifdef BOOST_DOXYGEN_INVOKED
template<class T, class ...Options>
#else
template <typename T,
class A0 = boost::parameter::void_,
class A1 = boost::parameter::void_,
class A2 = boost::parameter::void_,
class A3 = boost::parameter::void_,
class A4 = boost::parameter::void_,
class A5 = boost::parameter::void_
>
#endif
class d_ary_heap:
public detail::select_dary_heap<T, typename detail::d_ary_heap_signature::bind<A0, A1, A2, A3, A4, A5>::type>::type
{
typedef typename detail::d_ary_heap_signature::bind<A0, A1, A2, A3, A4, A5>::type bound_args;
typedef typename detail::select_dary_heap<T, bound_args>::type super_t;
template <typename Heap1, typename Heap2>
friend struct heap_merge_emulate;
#ifndef BOOST_DOXYGEN_INVOKED
static const bool is_mutable = detail::extract_mutable<bound_args>::value;
#define BOOST_HEAP_TYPEDEF_FROM_SUPER_T(NAME) \
typedef typename super_t::NAME NAME;
struct implementation_defined
{
BOOST_HEAP_TYPEDEF_FROM_SUPER_T(size_type)
BOOST_HEAP_TYPEDEF_FROM_SUPER_T(difference_type)
BOOST_HEAP_TYPEDEF_FROM_SUPER_T(value_compare)
BOOST_HEAP_TYPEDEF_FROM_SUPER_T(allocator_type)
BOOST_HEAP_TYPEDEF_FROM_SUPER_T(reference)
BOOST_HEAP_TYPEDEF_FROM_SUPER_T(const_reference)
BOOST_HEAP_TYPEDEF_FROM_SUPER_T(pointer)
BOOST_HEAP_TYPEDEF_FROM_SUPER_T(const_pointer)
BOOST_HEAP_TYPEDEF_FROM_SUPER_T(iterator)
BOOST_HEAP_TYPEDEF_FROM_SUPER_T(const_iterator)
BOOST_HEAP_TYPEDEF_FROM_SUPER_T(ordered_iterator)
BOOST_HEAP_TYPEDEF_FROM_SUPER_T(handle_type)
};
#undef BOOST_HEAP_TYPEDEF_FROM_SUPER_T
#endif
public:
static const bool constant_time_size = true;
static const bool has_ordered_iterators = true;
static const bool is_mergable = false;
static const bool has_reserve = true;
static const bool is_stable = super_t::is_stable;
typedef T value_type;
typedef typename implementation_defined::size_type size_type;
typedef typename implementation_defined::difference_type difference_type;
typedef typename implementation_defined::value_compare value_compare;
typedef typename implementation_defined::allocator_type allocator_type;
typedef typename implementation_defined::reference reference;
typedef typename implementation_defined::const_reference const_reference;
typedef typename implementation_defined::pointer pointer;
typedef typename implementation_defined::const_pointer const_pointer;
/// \copydoc boost::heap::priority_queue::iterator
typedef typename implementation_defined::iterator iterator;
typedef typename implementation_defined::const_iterator const_iterator;
typedef typename implementation_defined::ordered_iterator ordered_iterator;
typedef typename implementation_defined::handle_type handle_type;
/// \copydoc boost::heap::priority_queue::priority_queue(value_compare const &)
explicit d_ary_heap(value_compare const & cmp = value_compare()):
super_t(cmp)
{}
/// \copydoc boost::heap::priority_queue::priority_queue(priority_queue const &)
d_ary_heap(d_ary_heap const & rhs):
super_t(rhs)
{}
#ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
/// \copydoc boost::heap::priority_queue::priority_queue(priority_queue &&)
d_ary_heap(d_ary_heap && rhs):
super_t(std::move(rhs))
{}
/// \copydoc boost::heap::priority_queue::operator=(priority_queue &&)
d_ary_heap & operator=(d_ary_heap && rhs)
{
super_t::operator=(std::move(rhs));
return *this;
}
#endif
/// \copydoc boost::heap::priority_queue::operator=(priority_queue const &)
d_ary_heap & operator=(d_ary_heap const & rhs)
{
super_t::operator=(rhs);
return *this;
}
/// \copydoc boost::heap::priority_queue::empty
bool empty(void) const
{
return super_t::empty();
}
/// \copydoc boost::heap::priority_queue::size
size_type size(void) const
{
return super_t::size();
}
/// \copydoc boost::heap::priority_queue::max_size
size_type max_size(void) const
{
return super_t::max_size();
}
/// \copydoc boost::heap::priority_queue::clear
void clear(void)
{
super_t::clear();
}
/// \copydoc boost::heap::priority_queue::get_allocator
allocator_type get_allocator(void) const
{
return super_t::get_allocator();
}
/// \copydoc boost::heap::priority_queue::top
value_type const & top(void) const
{
return super_t::top();
}
/// \copydoc boost::heap::priority_queue::push
typename boost::conditional<is_mutable, handle_type, void>::type push(value_type const & v)
{
return super_t::push(v);
}
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES) && !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
/// \copydoc boost::heap::priority_queue::emplace
template <class... Args>
typename boost::conditional<is_mutable, handle_type, void>::type emplace(Args&&... args)
{
return super_t::emplace(std::forward<Args>(args)...);
}
#endif
/// \copydoc boost::heap::priority_queue::operator<(HeapType const & rhs) const
template <typename HeapType>
bool operator<(HeapType const & rhs) const
{
return detail::heap_compare(*this, rhs);
}
/// \copydoc boost::heap::priority_queue::operator>(HeapType const & rhs) const
template <typename HeapType>
bool operator>(HeapType const & rhs) const
{
return detail::heap_compare(rhs, *this);
}
/// \copydoc boost::heap::priority_queue::operator>=(HeapType const & rhs) const
template <typename HeapType>
bool operator>=(HeapType const & rhs) const
{
return !operator<(rhs);
}
/// \copydoc boost::heap::priority_queue::operator<=(HeapType const & rhs) const
template <typename HeapType>
bool operator<=(HeapType const & rhs) const
{
return !operator>(rhs);
}
/// \copydoc boost::heap::priority_queue::operator==(HeapType const & rhs) const
template <typename HeapType>
bool operator==(HeapType const & rhs) const
{
return detail::heap_equality(*this, rhs);
}
/// \copydoc boost::heap::priority_queue::operator!=(HeapType const & rhs) const
template <typename HeapType>
bool operator!=(HeapType const & rhs) const
{
return !(*this == rhs);
}
/**
* \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue.
*
* \b Complexity: Logarithmic.
*
* \b Requirement: data structure must be configured as mutable
* */
void update(handle_type handle, const_reference v)
{
BOOST_STATIC_ASSERT(is_mutable);
super_t::update(handle, v);
}
/**
* \b Effects: Updates the heap after the element handled by \c handle has been changed.
*
* \b Complexity: Logarithmic.
*
* \b Note: If this is not called, after a handle has been updated, the behavior of the data structure is undefined!
*
* \b Requirement: data structure must be configured as mutable
* */
void update(handle_type handle)
{
BOOST_STATIC_ASSERT(is_mutable);
super_t::update(handle);
}
/**
* \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue.
*
* \b Complexity: Logarithmic.
*
* \b Note: The new value is expected to be greater than the current one
*
* \b Requirement: data structure must be configured as mutable
* */
void increase(handle_type handle, const_reference v)
{
BOOST_STATIC_ASSERT(is_mutable);
super_t::increase(handle, v);
}
/**
* \b Effects: Updates the heap after the element handled by \c handle has been changed.
*
* \b Complexity: Logarithmic.
*
* \b Note: The new value is expected to be greater than the current one. If this is not called, after a handle has been updated, the behavior of the data structure is undefined!
*
* \b Requirement: data structure must be configured as mutable
* */
void increase(handle_type handle)
{
BOOST_STATIC_ASSERT(is_mutable);
super_t::increase(handle);
}
/**
* \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue.
*
* \b Complexity: Logarithmic.
*
* \b Note: The new value is expected to be less than the current one
*
* \b Requirement: data structure must be configured as mutable
* */
void decrease(handle_type handle, const_reference v)
{
BOOST_STATIC_ASSERT(is_mutable);
super_t::decrease(handle, v);
}
/**
* \b Effects: Updates the heap after the element handled by \c handle has been changed.
*
* \b Complexity: Logarithmic.
*
* \b Note: The new value is expected to be less than the current one. If this is not called, after a handle has been updated, the behavior of the data structure is undefined!
*
* \b Requirement: data structure must be configured as mutable
* */
void decrease(handle_type handle)
{
BOOST_STATIC_ASSERT(is_mutable);
super_t::decrease(handle);
}
/**
* \b Effects: Removes the element handled by \c handle from the priority_queue.
*
* \b Complexity: Logarithmic.
*
* \b Requirement: data structure must be configured as mutable
* */
void erase(handle_type handle)
{
BOOST_STATIC_ASSERT(is_mutable);
super_t::erase(handle);
}
/**
* \b Effects: Casts an iterator to a node handle.
*
* \b Complexity: Constant.
*
* \b Requirement: data structure must be configured as mutable
* */
static handle_type s_handle_from_iterator(iterator const & it)
{
BOOST_STATIC_ASSERT(is_mutable);
return super_t::s_handle_from_iterator(it);
}
/// \copydoc boost::heap::priority_queue::pop
void pop(void)
{
super_t::pop();
}
/// \copydoc boost::heap::priority_queue::swap
void swap(d_ary_heap & rhs)
{
super_t::swap(rhs);
}
/// \copydoc boost::heap::priority_queue::begin
const_iterator begin(void) const
{
return super_t::begin();
}
/// \copydoc boost::heap::priority_queue::begin
iterator begin(void)
{
return super_t::begin();
}
/// \copydoc boost::heap::priority_queue::end
iterator end(void)
{
return super_t::end();
}
/// \copydoc boost::heap::priority_queue::end
const_iterator end(void) const
{
return super_t::end();
}
/// \copydoc boost::heap::fibonacci_heap::ordered_begin
ordered_iterator ordered_begin(void) const
{
return super_t::ordered_begin();
}
/// \copydoc boost::heap::fibonacci_heap::ordered_end
ordered_iterator ordered_end(void) const
{
return super_t::ordered_end();
}
/// \copydoc boost::heap::priority_queue::reserve
void reserve (size_type element_count)
{
super_t::reserve(element_count);
}
/// \copydoc boost::heap::priority_queue::value_comp
value_compare const & value_comp(void) const
{
return super_t::value_comp();
}
};
} /* namespace heap */
} /* namespace boost */
#undef BOOST_HEAP_ASSERT
#endif /* BOOST_HEAP_D_ARY_HEAP_HPP */