boost/math/special_functions/ellint_1.hpp
// Copyright (c) 2006 Xiaogang Zhang
// Copyright (c) 2006 John Maddock
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// History:
// XZ wrote the original of this file as part of the Google
// Summer of Code 2006. JM modified it to fit into the
// Boost.Math conceptual framework better, and to ensure
// that the code continues to work no matter how many digits
// type T has.
#ifndef BOOST_MATH_ELLINT_1_HPP
#define BOOST_MATH_ELLINT_1_HPP
#ifdef _MSC_VER
#pragma once
#endif
#include <boost/math/special_functions/math_fwd.hpp>
#include <boost/math/special_functions/ellint_rf.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/math/policies/error_handling.hpp>
#include <boost/math/tools/workaround.hpp>
#include <boost/math/special_functions/round.hpp>
// Elliptic integrals (complete and incomplete) of the first kind
// Carlson, Numerische Mathematik, vol 33, 1 (1979)
namespace boost { namespace math {
template <class T1, class T2, class Policy>
typename tools::promote_args<T1, T2>::type ellint_1(T1 k, T2 phi, const Policy& pol);
namespace detail{
template <typename T, typename Policy>
T ellint_k_imp(T k, const Policy& pol);
// Elliptic integral (Legendre form) of the first kind
template <typename T, typename Policy>
T ellint_f_imp(T phi, T k, const Policy& pol)
{
BOOST_MATH_STD_USING
using namespace boost::math::tools;
using namespace boost::math::constants;
static const char* function = "boost::math::ellint_f<%1%>(%1%,%1%)";
BOOST_MATH_INSTRUMENT_VARIABLE(phi);
BOOST_MATH_INSTRUMENT_VARIABLE(k);
BOOST_MATH_INSTRUMENT_VARIABLE(function);
bool invert = false;
if(phi < 0)
{
BOOST_MATH_INSTRUMENT_VARIABLE(phi);
phi = fabs(phi);
invert = true;
}
T result;
if(phi >= tools::max_value<T>())
{
// Need to handle infinity as a special case:
result = policies::raise_overflow_error<T>(function, 0, pol);
BOOST_MATH_INSTRUMENT_VARIABLE(result);
}
else if(phi > 1 / tools::epsilon<T>())
{
// Phi is so large that phi%pi is necessarily zero (or garbage),
// just return the second part of the duplication formula:
result = 2 * phi * ellint_k_imp(k, pol) / constants::pi<T>();
BOOST_MATH_INSTRUMENT_VARIABLE(result);
}
else
{
// Carlson's algorithm works only for |phi| <= pi/2,
// use the integrand's periodicity to normalize phi
//
// Xiaogang's original code used a cast to long long here
// but that fails if T has more digits than a long long,
// so rewritten to use fmod instead:
//
BOOST_MATH_INSTRUMENT_CODE("pi/2 = " << constants::pi<T>() / 2);
T rphi = boost::math::tools::fmod_workaround(phi, T(constants::half_pi<T>()));
BOOST_MATH_INSTRUMENT_VARIABLE(rphi);
T m = boost::math::round((phi - rphi) / constants::half_pi<T>());
BOOST_MATH_INSTRUMENT_VARIABLE(m);
int s = 1;
if(boost::math::tools::fmod_workaround(m, T(2)) > 0.5)
{
m += 1;
s = -1;
rphi = constants::half_pi<T>() - rphi;
BOOST_MATH_INSTRUMENT_VARIABLE(rphi);
}
T sinp = sin(rphi);
sinp *= sinp;
if (sinp * k * k >= 1)
{
return policies::raise_domain_error<T>(function,
"Got k^2 * sin^2(phi) = %1%, but the function requires this < 1", sinp * k * k, pol);
}
T cosp = cos(rphi);
cosp *= cosp;
BOOST_MATH_INSTRUMENT_VARIABLE(sinp);
BOOST_MATH_INSTRUMENT_VARIABLE(cosp);
if(sinp > tools::min_value<T>())
{
BOOST_ASSERT(rphi != 0); // precondition, can't be true if sin(rphi) != 0.
//
// Use http://dlmf.nist.gov/19.25#E5, note that
// c-1 simplifies to cot^2(rphi) which avoid cancellation:
//
T c = 1 / sinp;
result = static_cast<T>(s * ellint_rf_imp(T(cosp / sinp), T(c - k * k), c, pol));
}
else
result = s * sin(rphi);
BOOST_MATH_INSTRUMENT_VARIABLE(result);
if(m != 0)
{
result += m * ellint_k_imp(k, pol);
BOOST_MATH_INSTRUMENT_VARIABLE(result);
}
}
return invert ? T(-result) : result;
}
// Complete elliptic integral (Legendre form) of the first kind
template <typename T, typename Policy>
T ellint_k_imp(T k, const Policy& pol)
{
BOOST_MATH_STD_USING
using namespace boost::math::tools;
static const char* function = "boost::math::ellint_k<%1%>(%1%)";
if (abs(k) > 1)
{
return policies::raise_domain_error<T>(function,
"Got k = %1%, function requires |k| <= 1", k, pol);
}
if (abs(k) == 1)
{
return policies::raise_overflow_error<T>(function, 0, pol);
}
T x = 0;
T y = 1 - k * k;
T z = 1;
T value = ellint_rf_imp(x, y, z, pol);
return value;
}
template <typename T, typename Policy>
inline typename tools::promote_args<T>::type ellint_1(T k, const Policy& pol, const mpl::true_&)
{
typedef typename tools::promote_args<T>::type result_type;
typedef typename policies::evaluation<result_type, Policy>::type value_type;
return policies::checked_narrowing_cast<result_type, Policy>(detail::ellint_k_imp(static_cast<value_type>(k), pol), "boost::math::ellint_1<%1%>(%1%)");
}
template <class T1, class T2>
inline typename tools::promote_args<T1, T2>::type ellint_1(T1 k, T2 phi, const mpl::false_&)
{
return boost::math::ellint_1(k, phi, policies::policy<>());
}
}
// Complete elliptic integral (Legendre form) of the first kind
template <typename T>
inline typename tools::promote_args<T>::type ellint_1(T k)
{
return ellint_1(k, policies::policy<>());
}
// Elliptic integral (Legendre form) of the first kind
template <class T1, class T2, class Policy>
inline typename tools::promote_args<T1, T2>::type ellint_1(T1 k, T2 phi, const Policy& pol)
{
typedef typename tools::promote_args<T1, T2>::type result_type;
typedef typename policies::evaluation<result_type, Policy>::type value_type;
return policies::checked_narrowing_cast<result_type, Policy>(detail::ellint_f_imp(static_cast<value_type>(phi), static_cast<value_type>(k), pol), "boost::math::ellint_1<%1%>(%1%,%1%)");
}
template <class T1, class T2>
inline typename tools::promote_args<T1, T2>::type ellint_1(T1 k, T2 phi)
{
typedef typename policies::is_policy<T2>::type tag_type;
return detail::ellint_1(k, phi, tag_type());
}
}} // namespaces
#endif // BOOST_MATH_ELLINT_1_HPP