Boost C++ Libraries

...one of the most highly regarded and expertly designed C++ library projects in the world.

libs/multiprecision/example/constexpr_float_arithmetic_examples.cpp

```//  (C) Copyright John Maddock 2019.
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file

#include <iostream>
#include <boost/math/constants/constants.hpp>
#ifdef BOOST_HAS_FLOAT128
#include <boost/multiprecision/float128.hpp>
#endif

//[constexpr_circle

template <class T>
{
return 2 * boost::math::constants::pi<T>() * radius;
}

template <class T>
{
}
//]

template <class T, unsigned Order>
struct const_polynomial
{
public:
T data[Order + 1];

public:
constexpr const_polynomial(T val = 0) : data{val} {}
constexpr const_polynomial(const std::initializer_list<T>& init) : data{}
{
if (init.size() > Order + 1)
throw std::range_error("Too many initializers in list");
for (unsigned i = 0; i < init.size(); ++i)
data[i] = init.begin()[i];
}
constexpr T& operator[](std::size_t N)
{
return data[N];
}
constexpr const T& operator[](std::size_t N) const
{
return data[N];
}
template <class U>
constexpr T operator()(U val)const
{
T result = data[Order];
for (unsigned i = Order; i > 0; --i)
{
result *= val;
result += data[i - 1];
}
return result;
}
constexpr const_polynomial<T, Order - 1> derivative() const
{
const_polynomial<T, Order - 1> result;
for (unsigned i = 1; i <= Order; ++i)
{
result[i - 1] = (*this)[i] * i;
}
return result;
}
constexpr const_polynomial operator-()
{
const_polynomial t(*this);
for (unsigned i = 0; i <= Order; ++i)
t[i] = -t[i];
return t;
}
template <class U>
constexpr const_polynomial& operator*=(U val)
{
for (unsigned i = 0; i <= Order; ++i)
data[i] = data[i] * val;
return *this;
}
template <class U>
constexpr const_polynomial& operator/=(U val)
{
for (unsigned i = 0; i <= Order; ++i)
data[i] = data[i] / val;
return *this;
}
template <class U>
constexpr const_polynomial& operator+=(U val)
{
data[0] += val;
return *this;
}
template <class U>
constexpr const_polynomial& operator-=(U val)
{
data[0] -= val;
return *this;
}
};

template <class T, unsigned Order1, unsigned Order2>
inline constexpr const_polynomial<T, (Order1 > Order2 ? Order1 : Order2)> operator+(const const_polynomial<T, Order1>& a, const const_polynomial<T, Order2>& b)
{
if
constexpr(Order1 > Order2)
{
const_polynomial<T, Order1> result(a);
for (unsigned i = 0; i <= Order2; ++i)
result[i] += b[i];
return result;
}
else
{
const_polynomial<T, Order2> result(b);
for (unsigned i = 0; i <= Order1; ++i)
result[i] += a[i];
return result;
}
}
template <class T, unsigned Order1, unsigned Order2>
inline constexpr const_polynomial<T, (Order1 > Order2 ? Order1 : Order2)> operator-(const const_polynomial<T, Order1>& a, const const_polynomial<T, Order2>& b)
{
if
constexpr(Order1 > Order2)
{
const_polynomial<T, Order1> result(a);
for (unsigned i = 0; i <= Order2; ++i)
result[i] -= b[i];
return result;
}
else
{
const_polynomial<T, Order2> result(b);
for (unsigned i = 0; i <= Order1; ++i)
result[i] = a[i] - b[i];
return result;
}
}
template <class T, unsigned Order1, unsigned Order2>
inline constexpr const_polynomial<T, Order1 + Order2> operator*(const const_polynomial<T, Order1>& a, const const_polynomial<T, Order2>& b)
{
const_polynomial<T, Order1 + Order2> result;
for (unsigned i = 0; i <= Order1; ++i)
{
for (unsigned j = 0; j <= Order2; ++j)
{
result[i + j] += a[i] * b[j];
}
}
return result;
}
template <class T, unsigned Order, class U>
inline constexpr const_polynomial<T, Order> operator*(const const_polynomial<T, Order>& a, const U& b)
{
const_polynomial<T, Order> result(a);
for (unsigned i = 0; i <= Order; ++i)
{
result[i] *= b;
}
return result;
}
template <class U, class T, unsigned Order>
inline constexpr const_polynomial<T, Order> operator*(const U& b, const const_polynomial<T, Order>& a)
{
const_polynomial<T, Order> result(a);
for (unsigned i = 0; i <= Order; ++i)
{
result[i] *= b;
}
return result;
}
template <class T, unsigned Order, class U>
inline constexpr const_polynomial<T, Order> operator/(const const_polynomial<T, Order>& a, const U& b)
{
const_polynomial<T, Order> result;
for (unsigned i = 0; i <= Order; ++i)
{
result[i] /= b;
}
return result;
}

//[hermite_example
template <class T, unsigned Order>
class hermite_polynomial
{
const_polynomial<T, Order> m_data;

public:
constexpr hermite_polynomial() : m_data(hermite_polynomial<T, Order - 1>().data() * const_polynomial<T, 1>{0, 2} - hermite_polynomial<T, Order - 1>().data().derivative())
{
}
constexpr const const_polynomial<T, Order>& data() const
{
return m_data;
}
constexpr const T& operator[](std::size_t N)const
{
return m_data[N];
}
template <class U>
constexpr T operator()(U val)const
{
return m_data(val);
}
};
//]
//[hermite_example2
template <class T>
class hermite_polynomial<T, 0>
{
const_polynomial<T, 0> m_data;

public:
constexpr hermite_polynomial() : m_data{1} {}
constexpr const const_polynomial<T, 0>& data() const
{
return m_data;
}
constexpr const T& operator[](std::size_t N) const
{
return m_data[N];
}
template <class U>
constexpr T operator()(U val)
{
return m_data(val);
}
};

template <class T>
class hermite_polynomial<T, 1>
{
const_polynomial<T, 1> m_data;

public:
constexpr hermite_polynomial() : m_data{0, 2} {}
constexpr const const_polynomial<T, 1>& data() const
{
return m_data;
}
constexpr const T& operator[](std::size_t N) const
{
return m_data[N];
}
template <class U>
constexpr T operator()(U val)
{
return m_data(val);
}
};
//]

void test_double()
{

std::cout << "Circumference = " << c << std::endl;
std::cout << "Area = " << a << std::endl;

constexpr const_polynomial<double, 2> pa = {3, 4};
constexpr const_polynomial<double, 2> pb = {5, 6};
static_assert(pa[0] == 3);
static_assert(pa[1] == 4);
constexpr auto pc = pa * 2;
static_assert(pc[0] == 6);
static_assert(pc[1] == 8);
constexpr auto pd = 3 * pa;
static_assert(pd[0] == 3 * 3);
static_assert(pd[1] == 4 * 3);
constexpr auto pe = pa + pb;
static_assert(pe[0] == 3 + 5);
static_assert(pe[1] == 4 + 6);
constexpr auto pf = pa - pb;
static_assert(pf[0] == 3 - 5);
static_assert(pf[1] == 4 - 6);
constexpr auto pg = pa * pb;
static_assert(pg[0] == 15);
static_assert(pg[1] == 38);
static_assert(pg[2] == 24);

constexpr hermite_polynomial<double, 2> h1;
static_assert(h1[0] == -2);
static_assert(h1[1] == 0);
static_assert(h1[2] == 4);

constexpr hermite_polynomial<double, 3> h3;
static_assert(h3[0] == 0);
static_assert(h3[1] == -12);
static_assert(h3[2] == 0);
static_assert(h3[3] == 8);

constexpr hermite_polynomial<double, 9> h9;
static_assert(h9[0] == 0);
static_assert(h9[1] == 30240);
static_assert(h9[2] == 0);
static_assert(h9[3] == -80640);
static_assert(h9[4] == 0);
static_assert(h9[5] == 48384);
static_assert(h9[6] == 0);
static_assert(h9[7] == -9216);
static_assert(h9[8] == 0);
static_assert(h9[9] == 512);

static_assert(h9(0.5) == 6481);

}

void test_float128()
{
#ifdef BOOST_HAS_FLOAT128
//[constexpr_circle_usage

using boost::multiprecision::float128;

std::cout << "Circumference = " << c << std::endl;
std::cout << "Area = " << a << std::endl;

//]

constexpr hermite_polynomial<float128, 2> h1;
static_assert(h1[0] == -2);
static_assert(h1[1] == 0);
static_assert(h1[2] == 4);

constexpr hermite_polynomial<float128, 3> h3;
static_assert(h3[0] == 0);
static_assert(h3[1] == -12);
static_assert(h3[2] == 0);
static_assert(h3[3] == 8);

//[hermite_example3
constexpr hermite_polynomial<float128, 9> h9;
//
// Verify that the polynomial's coefficients match the known values:
//
static_assert(h9[0] == 0);
static_assert(h9[1] == 30240);
static_assert(h9[2] == 0);
static_assert(h9[3] == -80640);
static_assert(h9[4] == 0);
static_assert(h9[5] == 48384);
static_assert(h9[6] == 0);
static_assert(h9[7] == -9216);
static_assert(h9[8] == 0);
static_assert(h9[9] == 512);
//
// Define an abscissa value to evaluate at:
//
constexpr float128 abscissa(0.5);
//
// Evaluate H_9(0.5) using all constexpr arithmetic:
//
static_assert(h9(abscissa) == 6481);
//]
#endif
}

int main()
{
test_double();
test_float128();
std::cout << "Done!" << std::endl;
}
```