boost/histogram/utility/wilson_interval.hpp
// Copyright 2022 Jay Gohil, Hans Dembinski
//
// Distributed under the Boost Software License, version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_HISTOGRAM_UTILITY_WILSON_INTERVAL_HPP
#define BOOST_HISTOGRAM_UTILITY_WILSON_INTERVAL_HPP
#include <boost/histogram/fwd.hpp>
#include <boost/histogram/utility/binomial_proportion_interval.hpp>
#include <cmath>
#include <utility>
namespace boost {
namespace histogram {
namespace utility {
/**
Wilson interval.
The Wilson score interval is simple to compute, has good coverage. Intervals are
automatically bounded between 0 and 1 and never empty. The interval is asymmetric.
Wilson, E. B. (1927). "Probable inference, the law of succession, and statistical
inference". Journal of the American Statistical Association. 22 (158): 209-212.
doi:10.1080/01621459.1927.10502953. JSTOR 2276774.
The coverage probability for a random ensemble of fractions is close to the nominal
value. Unlike the Clopper-Pearson interval, the Wilson score interval is not
conservative. For some values of the fractions, the interval undercovers and overcovers
for neighboring values. This is a shared property of all alternatives to the
Clopper-Pearson interval.
The Wilson score intervals is widely recommended for general use in the literature. For
a review of the literature, see R. D. Cousins, K. E. Hymes, J. Tucker, Nucl. Instrum.
Meth. A 612 (2010) 388-398.
*/
template <class ValueType>
class wilson_interval : public binomial_proportion_interval<ValueType> {
public:
using value_type = typename wilson_interval::value_type;
using interval_type = typename wilson_interval::interval_type;
/** Construct Wilson interval computer.
@param d Number of standard deviations for the interval. The default value 1
corresponds to a confidence level of 68 %. Both `deviation` and `confidence_level`
objects can be used to initialize the interval.
*/
explicit wilson_interval(deviation d = deviation{1.0}) noexcept
: z_{static_cast<value_type>(d)} {}
using binomial_proportion_interval<ValueType>::operator();
/** Compute interval for given number of successes and failures.
@param successes Number of successful trials.
@param failures Number of failed trials.
*/
interval_type operator()(value_type successes, value_type failures) const noexcept {
// See https://en.wikipedia.org/wiki/
// Binomial_proportion_confidence_interval
// #Wilson_score_interval
// We make sure calculation is done in single precision if value_type is float
// by converting all literals to value_type. Double literals in the equation
// would turn intermediate values to double.
const value_type half{0.5}, quarter{0.25}, zsq{z_ * z_};
const value_type total = successes + failures;
const value_type minv = 1 / (total + zsq);
const value_type t1 = (successes + half * zsq) * minv;
const value_type t2 =
z_ * minv * std::sqrt(successes * failures / total + quarter * zsq);
return {t1 - t2, t1 + t2};
}
private:
value_type z_;
};
} // namespace utility
} // namespace histogram
} // namespace boost
#endif