boost/compute/algorithm/sort.hpp
//---------------------------------------------------------------------------//
// Copyright (c) 2013 Kyle Lutz <kyle.r.lutz@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//
#ifndef BOOST_COMPUTE_ALGORITHM_SORT_HPP
#define BOOST_COMPUTE_ALGORITHM_SORT_HPP
#include <iterator>
#include <boost/utility/enable_if.hpp>
#include <boost/compute/system.hpp>
#include <boost/compute/command_queue.hpp>
#include <boost/compute/algorithm/detail/merge_sort_on_cpu.hpp>
#include <boost/compute/algorithm/detail/merge_sort_on_gpu.hpp>
#include <boost/compute/algorithm/detail/radix_sort.hpp>
#include <boost/compute/algorithm/detail/insertion_sort.hpp>
#include <boost/compute/algorithm/reverse.hpp>
#include <boost/compute/container/mapped_view.hpp>
#include <boost/compute/detail/iterator_range_size.hpp>
#include <boost/compute/iterator/buffer_iterator.hpp>
#include <boost/compute/type_traits/is_device_iterator.hpp>
namespace boost {
namespace compute {
namespace detail {
template<class T>
inline void dispatch_gpu_sort(buffer_iterator<T> first,
buffer_iterator<T> last,
less<T>,
command_queue &queue,
typename boost::enable_if_c<
is_radix_sortable<T>::value
>::type* = 0)
{
size_t count = detail::iterator_range_size(first, last);
if(count < 2){
// nothing to do
return;
}
else if(count <= 32){
::boost::compute::detail::serial_insertion_sort(first, last, queue);
}
else {
::boost::compute::detail::radix_sort(first, last, queue);
}
}
template<class T>
inline void dispatch_gpu_sort(buffer_iterator<T> first,
buffer_iterator<T> last,
greater<T> compare,
command_queue &queue,
typename boost::enable_if_c<
is_radix_sortable<T>::value
>::type* = 0)
{
size_t count = detail::iterator_range_size(first, last);
if(count < 2){
// nothing to do
return;
}
else if(count <= 32){
::boost::compute::detail::serial_insertion_sort(
first, last, compare, queue
);
}
else {
// radix sorts in descending order
::boost::compute::detail::radix_sort(first, last, false, queue);
}
}
template<class Iterator, class Compare>
inline void dispatch_gpu_sort(Iterator first,
Iterator last,
Compare compare,
command_queue &queue)
{
size_t count = detail::iterator_range_size(first, last);
if(count < 2){
// nothing to do
return;
}
else if(count <= 32){
::boost::compute::detail::serial_insertion_sort(
first, last, compare, queue
);
}
else {
::boost::compute::detail::merge_sort_on_gpu(
first, last, compare, queue
);
}
}
// sort() for device iterators
template<class Iterator, class Compare>
inline void dispatch_sort(Iterator first,
Iterator last,
Compare compare,
command_queue &queue,
typename boost::enable_if<
is_device_iterator<Iterator>
>::type* = 0)
{
if(queue.get_device().type() & device::gpu) {
dispatch_gpu_sort(first, last, compare, queue);
return;
}
::boost::compute::detail::merge_sort_on_cpu(first, last, compare, queue);
}
// sort() for host iterators
template<class Iterator, class Compare>
inline void dispatch_sort(Iterator first,
Iterator last,
Compare compare,
command_queue &queue,
typename boost::disable_if<
is_device_iterator<Iterator>
>::type* = 0)
{
typedef typename std::iterator_traits<Iterator>::value_type T;
size_t size = static_cast<size_t>(std::distance(first, last));
// create mapped buffer
mapped_view<T> view(
boost::addressof(*first), size, queue.get_context()
);
// sort mapped buffer
dispatch_sort(view.begin(), view.end(), compare, queue);
// return results to host
view.map(queue);
}
} // end detail namespace
/// Sorts the values in the range [\p first, \p last) according to
/// \p compare.
///
/// \param first first element in the range to sort
/// \param last last element in the range to sort
/// \param compare comparison function (by default \c less)
/// \param queue command queue to perform the operation
///
/// For example, to sort a vector on the device:
/// \code
/// // create vector on the device with data
/// float data[] = { 2.f, 4.f, 1.f, 3.f };
/// boost::compute::vector<float> vec(data, data + 4, queue);
///
/// // sort the vector on the device
/// boost::compute::sort(vec.begin(), vec.end(), queue);
/// \endcode
///
/// The sort() algorithm can also be directly used with host iterators. This
/// example will automatically transfer the data to the device, sort it, and
/// then transfer the data back to the host:
/// \code
/// std::vector<int> data = { 9, 3, 2, 5, 1, 4, 6, 7 };
///
/// boost::compute::sort(data.begin(), data.end(), queue);
/// \endcode
///
/// Space complexity: \Omega(n)
///
/// \see is_sorted()
template<class Iterator, class Compare>
inline void sort(Iterator first,
Iterator last,
Compare compare,
command_queue &queue = system::default_queue())
{
::boost::compute::detail::dispatch_sort(first, last, compare, queue);
}
/// \overload
template<class Iterator>
inline void sort(Iterator first,
Iterator last,
command_queue &queue = system::default_queue())
{
typedef typename std::iterator_traits<Iterator>::value_type value_type;
::boost::compute::sort(
first, last, ::boost::compute::less<value_type>(), queue
);
}
} // end compute namespace
} // end boost namespace
#endif // BOOST_COMPUTE_ALGORITHM_SORT_HPP