boost/gil/utilities.hpp
//
// Copyright 2005-2007 Adobe Systems Incorporated
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
#ifndef BOOST_GIL_UTILITIES_HPP
#define BOOST_GIL_UTILITIES_HPP
#include <boost/gil/detail/mp11.hpp>
#include <boost/config.hpp>
#if defined(BOOST_CLANG)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wconversion"
#endif
#if defined(BOOST_GCC) && (BOOST_GCC >= 40900)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wconversion"
#endif
#include <boost/iterator/iterator_adaptor.hpp>
#include <boost/iterator/iterator_facade.hpp>
#if defined(BOOST_CLANG)
#pragma clang diagnostic pop
#endif
#if defined(BOOST_GCC) && (BOOST_GCC >= 40900)
#pragma GCC diagnostic pop
#endif
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <functional>
#include <iterator>
#include <utility>
#include <type_traits>
namespace boost { namespace gil {
/// Various utilities not specific to the image library.
/// Some are non-standard STL extensions or generic iterator adaptors
////////////////////////////////////////////////////////////////////////////////
/// Rounding of real numbers / points to integers / integer points
////////////////////////////////////////////////////////////////////////////////
inline std::ptrdiff_t iround(float x)
{
return static_cast<std::ptrdiff_t>(x + (x < 0.0f ? -0.5f : 0.5f));
}
inline std::ptrdiff_t iround(double x)
{
return static_cast<std::ptrdiff_t>(x + (x < 0.0 ? -0.5 : 0.5));
}
inline std::ptrdiff_t ifloor(float x)
{
return static_cast<std::ptrdiff_t>(std::floor(x));
}
inline std::ptrdiff_t ifloor(double x)
{
return static_cast<std::ptrdiff_t>(std::floor(x));
}
inline std::ptrdiff_t iceil(float x)
{
return static_cast<std::ptrdiff_t>(std::ceil(x));
}
inline std::ptrdiff_t iceil(double x)
{
return static_cast<std::ptrdiff_t>(std::ceil(x));
}
////////////////////////////////////////////////////////////////////////////////
/// computing size with alignment
////////////////////////////////////////////////////////////////////////////////
template <typename T>
inline T align(T val, std::size_t alignment)
{
return val+(alignment - val%alignment)%alignment;
}
/// \brief Helper base class for pixel dereference adaptors.
/// \ingroup PixelDereferenceAdaptorModel
///
template
<
typename ConstT,
typename Value,
typename Reference,
typename ConstReference,
typename ArgType,
typename ResultType,
bool IsMutable
>
struct deref_base
{
using argument_type = ArgType;
using result_type = ResultType;
using const_t = ConstT;
using value_type = Value;
using reference = Reference;
using const_reference = ConstReference;
static constexpr bool is_mutable = IsMutable;
};
/// \brief Composes two dereference function objects. Similar to std::unary_compose but needs to pull some aliases from the component types. Models: PixelDereferenceAdaptorConcept
/// \ingroup PixelDereferenceAdaptorModel
///
template <typename D1, typename D2>
class deref_compose : public deref_base
<
deref_compose<typename D1::const_t, typename D2::const_t>,
typename D1::value_type,
typename D1::reference,
typename D1::const_reference,
typename D2::argument_type,
typename D1::result_type,
D1::is_mutable && D2::is_mutable
>
{
public:
D1 _fn1;
D2 _fn2;
using argument_type = typename D2::argument_type;
using result_type = typename D1::result_type;
deref_compose() = default;
deref_compose(const D1& x, const D2& y) : _fn1(x), _fn2(y) {}
deref_compose(const deref_compose& dc) : _fn1(dc._fn1), _fn2(dc._fn2) {}
template <typename _D1, typename _D2>
deref_compose(const deref_compose<_D1,_D2>& dc)
: _fn1(dc._fn1), _fn2(dc._fn2)
{}
result_type operator()(argument_type x) const { return _fn1(_fn2(x)); }
result_type operator()(argument_type x) { return _fn1(_fn2(x)); }
};
// reinterpret_cast is implementation-defined. Static cast is not.
template <typename OutPtr, typename In>
BOOST_FORCEINLINE
auto gil_reinterpret_cast(In* p) -> OutPtr
{
return static_cast<OutPtr>(static_cast<void*>(p));
}
template <typename OutPtr, typename In>
BOOST_FORCEINLINE
auto gil_reinterpret_cast_c(In const* p) -> OutPtr const
{
return static_cast<OutPtr const>(static_cast<void const*>(p));
}
namespace detail {
////////////////////////////////////////////////////////////////////////////////
/// \brief copy_n taken from SGI STL.
////////////////////////////////////////////////////////////////////////////////
template <class InputIter, class Size, class OutputIter>
auto _copy_n(InputIter first, Size count, OutputIter result, std::input_iterator_tag)
-> std::pair<InputIter, OutputIter>
{
for ( ; count > 0; --count)
{
*result = *first;
++first;
++result;
}
return std::pair<InputIter, OutputIter>(first, result);
}
template <class RAIter, class Size, class OutputIter>
inline auto _copy_n(RAIter first, Size count, OutputIter result, std::random_access_iterator_tag)
-> std::pair<RAIter, OutputIter>
{
RAIter last = first + count;
return std::pair<RAIter, OutputIter>(last, std::copy(first, last, result));
}
template <class InputIter, class Size, class OutputIter>
inline auto _copy_n(InputIter first, Size count, OutputIter result)
-> std::pair<InputIter, OutputIter>
{
return _copy_n(first, count, result, typename std::iterator_traits<InputIter>::iterator_category());
}
template <class InputIter, class Size, class OutputIter>
inline auto copy_n(InputIter first, Size count, OutputIter result)
-> std::pair<InputIter, OutputIter>
{
return detail::_copy_n(first, count, result);
}
/// \brief identity taken from SGI STL.
template <typename T>
struct identity
{
using argument_type = T;
using result_type = T;
const T& operator()(const T& val) const { return val; }
};
/// \brief plus function object whose arguments may be of different type.
template <typename T1, typename T2>
struct plus_asymmetric {
using first_argument_type = T1;
using second_argument_type = T2;
using result_type = T1;
T1 operator()(T1 f1, T2 f2) const
{
return f1+f2;
}
};
/// \brief operator++ wrapped in a function object
template <typename T>
struct inc
{
using argument_type = T;
using result_type = T;
T operator()(T x) const { return ++x; }
};
/// \brief operator-- wrapped in a function object
template <typename T>
struct dec
{
using argument_type = T;
using result_type = T;
T operator()(T x) const { return --x; }
};
/// \brief Returns the index corresponding to the first occurrance of a given given type in
// a given Boost.MP11-compatible list (or size if the type is not present)
template <typename Types, typename T>
struct type_to_index : mp11::mp_find<Types, T>
{
static_assert(mp11::mp_contains<Types, T>::value, "T should be element of Types");
};
} // namespace detail
/// \ingroup ColorSpaceAndLayoutModel
/// \brief Represents a color space and ordering of channels in memory
template
<
typename ColorSpace,
typename ChannelMapping = mp11::mp_iota
<
std::integral_constant<int, mp11::mp_size<ColorSpace>::value>
>
>
struct layout
{
using color_space_t = ColorSpace;
using channel_mapping_t = ChannelMapping;
static_assert(mp11::mp_size<ColorSpace>::value > 0,
"color space should not be empty sequence");
};
/// \brief A version of swap that also works with reference proxy objects
/// Where value_type<T1> == value_type<T2> == Value
template <typename Value, typename T1, typename T2>
void swap_proxy(T1& left, T2& right)
{
Value tmp = left;
left = right;
right = tmp;
}
/// \brief Run-time detection of whether the underlying architecture is little endian
BOOST_FORCEINLINE bool little_endian()
{
short tester = 0x0001;
return *(char*)&tester!=0;
}
/// \brief Run-time detection of whether the underlying architecture is big endian
BOOST_FORCEINLINE bool big_endian()
{
return !little_endian();
}
}} // namespace boost::gil
#endif