boost/graph/planar_detail/face_iterators.hpp
//=======================================================================
// Copyright (c) Aaron Windsor 2007
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
#ifndef __FACE_ITERATORS_HPP__
#define __FACE_ITERATORS_HPP__
#include <boost/iterator/iterator_facade.hpp>
#include <boost/mpl/bool.hpp>
#include <boost/graph/graph_traits.hpp>
namespace boost
{
// tags for defining traversal properties
// VisitorType
struct lead_visitor
{
};
struct follow_visitor
{
};
// TraversalType
struct single_side
{
};
struct both_sides
{
};
// TraversalSubType
struct first_side
{
}; // for single_side
struct second_side
{
}; // for single_side
struct alternating
{
}; // for both_sides
// Time
struct current_iteration
{
};
struct previous_iteration
{
};
// Why TraversalType AND TraversalSubType? TraversalSubType is a function
// template parameter passed in to the constructor of the face iterator,
// whereas TraversalType is a class template parameter. This lets us decide
// at runtime whether to move along the first or second side of a bicomp (by
// assigning a face_iterator that has been constructed with TraversalSubType
// = first_side or second_side to a face_iterator variable) without any of
// the virtual function overhead that comes with implementing this
// functionality as a more structured form of type erasure. It also allows
// a single face_iterator to be the end iterator of two iterators traversing
// both sides of a bicomp.
// ValueType is either graph_traits<Graph>::vertex_descriptor
// or graph_traits<Graph>::edge_descriptor
// forward declaration (defining defaults)
template < typename Graph, typename FaceHandlesMap, typename ValueType,
typename BicompSideToTraverse = single_side,
typename VisitorType = lead_visitor, typename Time = current_iteration >
class face_iterator;
template < typename Graph, bool StoreEdge > struct edge_storage
{
};
template < typename Graph > struct edge_storage< Graph, true >
{
typename graph_traits< Graph >::edge_descriptor value;
};
// specialization for TraversalType = traverse_vertices
template < typename Graph, typename FaceHandlesMap, typename ValueType,
typename TraversalType, typename VisitorType, typename Time >
class face_iterator : public boost::iterator_facade<
face_iterator< Graph, FaceHandlesMap, ValueType,
TraversalType, VisitorType, Time >,
ValueType, boost::forward_traversal_tag, ValueType >
{
public:
typedef typename graph_traits< Graph >::vertex_descriptor vertex_t;
typedef typename graph_traits< Graph >::edge_descriptor edge_t;
typedef face_iterator< Graph, FaceHandlesMap, ValueType, TraversalType,
VisitorType, Time >
self;
typedef typename FaceHandlesMap::value_type face_handle_t;
face_iterator()
: m_lead(graph_traits< Graph >::null_vertex())
, m_follow(graph_traits< Graph >::null_vertex())
{
}
template < typename TraversalSubType >
face_iterator(face_handle_t anchor_handle, FaceHandlesMap face_handles,
TraversalSubType traversal_type)
: m_follow(anchor_handle.get_anchor()), m_face_handles(face_handles)
{
set_lead_dispatch(anchor_handle, traversal_type);
}
template < typename TraversalSubType >
face_iterator(vertex_t anchor, FaceHandlesMap face_handles,
TraversalSubType traversal_type)
: m_follow(anchor), m_face_handles(face_handles)
{
set_lead_dispatch(m_face_handles[anchor], traversal_type);
}
private:
friend class boost::iterator_core_access;
inline vertex_t get_first_vertex(
face_handle_t anchor_handle, current_iteration)
{
return anchor_handle.first_vertex();
}
inline vertex_t get_second_vertex(
face_handle_t anchor_handle, current_iteration)
{
return anchor_handle.second_vertex();
}
inline vertex_t get_first_vertex(
face_handle_t anchor_handle, previous_iteration)
{
return anchor_handle.old_first_vertex();
}
inline vertex_t get_second_vertex(
face_handle_t anchor_handle, previous_iteration)
{
return anchor_handle.old_second_vertex();
}
inline void set_lead_dispatch(face_handle_t anchor_handle, first_side)
{
m_lead = get_first_vertex(anchor_handle, Time());
set_edge_to_first_dispatch(anchor_handle, ValueType(), Time());
}
inline void set_lead_dispatch(face_handle_t anchor_handle, second_side)
{
m_lead = get_second_vertex(anchor_handle, Time());
set_edge_to_second_dispatch(anchor_handle, ValueType(), Time());
}
inline void set_edge_to_first_dispatch(
face_handle_t anchor_handle, edge_t, current_iteration)
{
m_edge.value = anchor_handle.first_edge();
}
inline void set_edge_to_second_dispatch(
face_handle_t anchor_handle, edge_t, current_iteration)
{
m_edge.value = anchor_handle.second_edge();
}
inline void set_edge_to_first_dispatch(
face_handle_t anchor_handle, edge_t, previous_iteration)
{
m_edge.value = anchor_handle.old_first_edge();
}
inline void set_edge_to_second_dispatch(
face_handle_t anchor_handle, edge_t, previous_iteration)
{
m_edge.value = anchor_handle.old_second_edge();
}
template < typename T >
inline void set_edge_to_first_dispatch(face_handle_t, vertex_t, T)
{
}
template < typename T >
inline void set_edge_to_second_dispatch(face_handle_t, vertex_t, T)
{
}
void increment()
{
face_handle_t curr_face_handle(m_face_handles[m_lead]);
vertex_t first = get_first_vertex(curr_face_handle, Time());
vertex_t second = get_second_vertex(curr_face_handle, Time());
if (first == m_follow)
{
m_follow = m_lead;
set_edge_to_second_dispatch(curr_face_handle, ValueType(), Time());
m_lead = second;
}
else if (second == m_follow)
{
m_follow = m_lead;
set_edge_to_first_dispatch(curr_face_handle, ValueType(), Time());
m_lead = first;
}
else
m_lead = m_follow = graph_traits< Graph >::null_vertex();
}
bool equal(self const& other) const
{
return m_lead == other.m_lead && m_follow == other.m_follow;
}
ValueType dereference() const
{
return dereference_dispatch(VisitorType(), ValueType());
}
inline ValueType dereference_dispatch(lead_visitor, vertex_t) const
{
return m_lead;
}
inline ValueType dereference_dispatch(follow_visitor, vertex_t) const
{
return m_follow;
}
inline ValueType dereference_dispatch(lead_visitor, edge_t) const
{
return m_edge.value;
}
inline ValueType dereference_dispatch(follow_visitor, edge_t) const
{
return m_edge.value;
}
vertex_t m_lead;
vertex_t m_follow;
edge_storage< Graph, boost::is_same< ValueType, edge_t >::value > m_edge;
FaceHandlesMap m_face_handles;
};
template < typename Graph, typename FaceHandlesMap, typename ValueType,
typename VisitorType, typename Time >
class face_iterator< Graph, FaceHandlesMap, ValueType, both_sides, VisitorType,
Time >
: public boost::iterator_facade< face_iterator< Graph, FaceHandlesMap,
ValueType, both_sides, VisitorType, Time >,
ValueType, boost::forward_traversal_tag, ValueType >
{
public:
typedef face_iterator< Graph, FaceHandlesMap, ValueType, both_sides,
VisitorType, Time >
self;
typedef typename graph_traits< Graph >::vertex_descriptor vertex_t;
typedef typename FaceHandlesMap::value_type face_handle_t;
face_iterator() {}
face_iterator(face_handle_t anchor_handle, FaceHandlesMap face_handles)
: first_itr(anchor_handle, face_handles, first_side())
, second_itr(anchor_handle, face_handles, second_side())
, first_is_active(true)
, first_increment(true)
{
}
face_iterator(vertex_t anchor, FaceHandlesMap face_handles)
: first_itr(face_handles[anchor], face_handles, first_side())
, second_itr(face_handles[anchor], face_handles, second_side())
, first_is_active(true)
, first_increment(true)
{
}
private:
friend class boost::iterator_core_access;
typedef face_iterator< Graph, FaceHandlesMap, ValueType, single_side,
follow_visitor, Time >
inner_itr_t;
void increment()
{
if (first_increment)
{
++first_itr;
++second_itr;
first_increment = false;
}
else if (first_is_active)
++first_itr;
else
++second_itr;
first_is_active = !first_is_active;
}
bool equal(self const& other) const
{
// Want this iterator to be equal to the "end" iterator when at least
// one of the iterators has reached the root of the current bicomp.
// This isn't ideal, but it works.
return (first_itr == other.first_itr || second_itr == other.second_itr);
}
ValueType dereference() const
{
return first_is_active ? *first_itr : *second_itr;
}
inner_itr_t first_itr;
inner_itr_t second_itr;
inner_itr_t face_end;
bool first_is_active;
bool first_increment;
};
} /* namespace boost */
#endif //__FACE_ITERATORS_HPP__