boost/graph/stoer_wagner_min_cut.hpp
// Copyright Daniel Trebbien 2010.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or the copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GRAPH_STOER_WAGNER_MIN_CUT_HPP
#define BOOST_GRAPH_STOER_WAGNER_MIN_CUT_HPP 1
#include <boost/assert.hpp>
#include <set>
#include <vector>
#include <boost/concept_check.hpp>
#include <boost/concept/assert.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/buffer_concepts.hpp>
#include <boost/graph/exception.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/maximum_adjacency_search.hpp>
#include <boost/graph/named_function_params.hpp>
#include <boost/graph/one_bit_color_map.hpp>
#include <boost/graph/detail/d_ary_heap.hpp>
#include <boost/property_map/property_map.hpp>
#include <boost/tuple/tuple.hpp>
#include <boost/utility/result_of.hpp>
#include <boost/graph/iteration_macros.hpp>
namespace boost
{
namespace detail
{
/**
* \brief Performs a phase of the Stoer-Wagner min-cut algorithm
*
* Performs a phase of the Stoer-Wagner min-cut algorithm.
*
* As described by Stoer & Wagner (1997), a phase is simply a maximum
* adjacency search (also called a maximum cardinality search), which
* results in the selection of two vertices \em s and \em t, and, as a side
* product, a minimum <em>s</em>-<em>t</em> cut of the input graph. Here,
* the input graph is basically \p g, but some vertices are virtually
* assigned to others as a way of viewing \p g as a graph with some sets of
* vertices merged together.
*
* This implementation is a translation of pseudocode by Professor Uri
* Zwick, School of Computer Science, Tel Aviv University.
*
* \pre \p g is a connected, undirected graph
* \param[in] g the input graph
* \param[in] assignments a read/write property map from each vertex to the
* vertex that it is assigned to
* \param[in] assignedVertices a list of vertices that are assigned to
* others
* \param[in] weights a readable property map from each edge to its
* weight (a non-negative value)
* \param[out] pq a keyed, updatable max-priority queue
* \returns a tuple (\em s, \em t, \em w) of the "<em>s</em>" and
* "<em>t</em>" of the minimum <em>s</em>-<em>t</em> cut and the
* cut weight \em w of the minimum <em>s</em>-<em>t</em> cut.
* \see http://www.cs.tau.ac.il/~zwick/grad-algo-08/gmc.pdf
*
* \author Daniel Trebbien
* \date 2010-09-11
*/
template < class UndirectedGraph, class VertexAssignmentMap,
class WeightMap, class KeyedUpdatablePriorityQueue >
boost::tuple<
typename boost::graph_traits< UndirectedGraph >::vertex_descriptor,
typename boost::graph_traits< UndirectedGraph >::vertex_descriptor,
typename boost::property_traits< WeightMap >::value_type >
stoer_wagner_phase(const UndirectedGraph& g,
VertexAssignmentMap assignments,
const std::set< typename boost::graph_traits<
UndirectedGraph >::vertex_descriptor >& assignedVertices,
WeightMap weights, KeyedUpdatablePriorityQueue& pq)
{
typedef
typename boost::graph_traits< UndirectedGraph >::vertex_descriptor
vertex_descriptor;
typedef typename boost::property_traits< WeightMap >::value_type
weight_type;
BOOST_ASSERT(pq.empty());
typename KeyedUpdatablePriorityQueue::key_map keys = pq.keys();
BGL_FORALL_VERTICES_T(v, g, UndirectedGraph)
{
if (v == get(assignments, v))
{ // foreach u \in V do
put(keys, v, weight_type(0));
pq.push(v);
}
}
BOOST_ASSERT(pq.size() >= 2);
vertex_descriptor s
= boost::graph_traits< UndirectedGraph >::null_vertex();
vertex_descriptor t
= boost::graph_traits< UndirectedGraph >::null_vertex();
weight_type w;
while (!pq.empty())
{ // while PQ \neq {} do
const vertex_descriptor u = pq.top(); // u = extractmax(PQ)
w = get(keys, u);
pq.pop();
s = t;
t = u;
BGL_FORALL_OUTEDGES_T(u, e, g, UndirectedGraph)
{ // foreach (u, v) \in E do
const vertex_descriptor v = get(assignments, target(e, g));
if (pq.contains(v))
{ // if v \in PQ then
put(keys, v,
get(keys, v)
+ get(weights,
e)); // increasekey(PQ, v, wA(v) + w(u, v))
pq.update(v);
}
}
typename std::set< vertex_descriptor >::const_iterator
assignedVertexIt,
assignedVertexEnd = assignedVertices.end();
for (assignedVertexIt = assignedVertices.begin();
assignedVertexIt != assignedVertexEnd; ++assignedVertexIt)
{
const vertex_descriptor uPrime = *assignedVertexIt;
if (get(assignments, uPrime) == u)
{
BGL_FORALL_OUTEDGES_T(uPrime, e, g, UndirectedGraph)
{ // foreach (u, v) \in E do
const vertex_descriptor v
= get(assignments, target(e, g));
if (pq.contains(v))
{ // if v \in PQ then
put(keys, v,
get(keys, v)
+ get(weights, e)); // increasekey(PQ, v,
// wA(v) + w(u, v))
pq.update(v);
}
}
}
}
}
return boost::make_tuple(s, t, w);
}
/**
* \brief Computes a min-cut of the input graph
*
* Computes a min-cut of the input graph using the Stoer-Wagner algorithm.
*
* \pre \p g is a connected, undirected graph
* \pre <code>pq.empty()</code>
* \param[in] g the input graph
* \param[in] weights a readable property map from each edge to its weight
* (a non-negative value) \param[out] parities a writable property map from
* each vertex to a bool type object for distinguishing the two vertex sets
* of the min-cut \param[out] assignments a read/write property map from
* each vertex to a \c vertex_descriptor object. This map serves as work
* space, and no particular meaning should be derived from property values
* after completion of the algorithm.
* \param[out] pq a keyed, updatable max-priority queue
* \returns the cut weight of the min-cut
* \see
* http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.114.6687&rep=rep1&type=pdf
* \see
* http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.31.614&rep=rep1&type=pdf
*
* \author Daniel Trebbien
* \date 2010-09-11
*/
template < class UndirectedGraph, class WeightMap, class ParityMap,
class VertexAssignmentMap, class KeyedUpdatablePriorityQueue,
class IndexMap >
typename boost::property_traits< WeightMap >::value_type
stoer_wagner_min_cut(const UndirectedGraph& g, WeightMap weights,
ParityMap parities, VertexAssignmentMap assignments,
KeyedUpdatablePriorityQueue& pq, IndexMap index_map)
{
typedef
typename boost::graph_traits< UndirectedGraph >::vertex_descriptor
vertex_descriptor;
typedef typename boost::property_traits< WeightMap >::value_type
weight_type;
typedef
typename boost::graph_traits< UndirectedGraph >::vertices_size_type
vertices_size_type;
typedef typename boost::property_traits< ParityMap >::value_type
parity_type;
vertices_size_type n = num_vertices(g);
std::set< vertex_descriptor > assignedVertices;
// initialize `assignments` (all vertices are initially assigned to
// themselves)
BGL_FORALL_VERTICES_T(v, g, UndirectedGraph) { put(assignments, v, v); }
vertex_descriptor s, t;
weight_type bestW;
boost::tie(s, t, bestW) = boost::detail::stoer_wagner_phase(
g, assignments, assignedVertices, weights, pq);
BOOST_ASSERT(s != t);
BGL_FORALL_VERTICES_T(v, g, UndirectedGraph)
{
put(parities, v, parity_type(v == t ? 1 : 0));
}
put(assignments, t, s);
assignedVertices.insert(t);
--n;
for (; n >= 2; --n)
{
weight_type w;
boost::tie(s, t, w) = boost::detail::stoer_wagner_phase(
g, assignments, assignedVertices, weights, pq);
BOOST_ASSERT(s != t);
if (w < bestW)
{
BGL_FORALL_VERTICES_T(v, g, UndirectedGraph)
{
put(parities, v,
parity_type(get(assignments, v) == t ? 1 : 0));
if (get(assignments, v)
== t) // all vertices that were assigned to t are now
// assigned to s
put(assignments, v, s);
}
bestW = w;
}
else
{
BGL_FORALL_VERTICES_T(v, g, UndirectedGraph)
{
if (get(assignments, v)
== t) // all vertices that were assigned to t are now
// assigned to s
put(assignments, v, s);
}
}
put(assignments, t, s);
assignedVertices.insert(t);
}
BOOST_ASSERT(pq.empty());
return bestW;
}
} // end `namespace detail` within `namespace boost`
template < class UndirectedGraph, class WeightMap, class ParityMap,
class VertexAssignmentMap, class KeyedUpdatablePriorityQueue,
class IndexMap >
typename boost::property_traits< WeightMap >::value_type stoer_wagner_min_cut(
const UndirectedGraph& g, WeightMap weights, ParityMap parities,
VertexAssignmentMap assignments, KeyedUpdatablePriorityQueue& pq,
IndexMap index_map)
{
BOOST_CONCEPT_ASSERT((boost::IncidenceGraphConcept< UndirectedGraph >));
BOOST_CONCEPT_ASSERT((boost::VertexListGraphConcept< UndirectedGraph >));
typedef typename boost::graph_traits< UndirectedGraph >::vertex_descriptor
vertex_descriptor;
typedef typename boost::graph_traits< UndirectedGraph >::vertices_size_type
vertices_size_type;
typedef typename boost::graph_traits< UndirectedGraph >::edge_descriptor
edge_descriptor;
BOOST_CONCEPT_ASSERT((boost::Convertible<
typename boost::graph_traits< UndirectedGraph >::directed_category,
boost::undirected_tag >));
BOOST_CONCEPT_ASSERT(
(boost::ReadablePropertyMapConcept< WeightMap, edge_descriptor >));
// typedef typename boost::property_traits<WeightMap>::value_type
// weight_type;
BOOST_CONCEPT_ASSERT(
(boost::WritablePropertyMapConcept< ParityMap, vertex_descriptor >));
// typedef typename boost::property_traits<ParityMap>::value_type
// parity_type;
BOOST_CONCEPT_ASSERT(
(boost::ReadWritePropertyMapConcept< VertexAssignmentMap,
vertex_descriptor >));
BOOST_CONCEPT_ASSERT((boost::Convertible< vertex_descriptor,
typename boost::property_traits< VertexAssignmentMap >::value_type >));
BOOST_CONCEPT_ASSERT(
(boost::KeyedUpdatableQueueConcept< KeyedUpdatablePriorityQueue >));
vertices_size_type n = num_vertices(g);
if (n < 2)
throw boost::bad_graph(
"the input graph must have at least two vertices.");
else if (!pq.empty())
throw std::invalid_argument(
"the max-priority queue must be empty initially.");
return detail::stoer_wagner_min_cut(
g, weights, parities, assignments, pq, index_map);
}
namespace graph
{
namespace detail
{
template < class UndirectedGraph, class WeightMap >
struct stoer_wagner_min_cut_impl
{
typedef typename boost::property_traits< WeightMap >::value_type
result_type;
template < typename ArgPack >
result_type operator()(const UndirectedGraph& g, WeightMap weights,
const ArgPack& arg_pack) const
{
using namespace boost::graph::keywords;
typedef typename boost::graph_traits<
UndirectedGraph >::vertex_descriptor vertex_descriptor;
typedef typename boost::property_traits< WeightMap >::value_type
weight_type;
typedef boost::detail::make_priority_queue_from_arg_pack_gen<
boost::graph::keywords::tag::max_priority_queue,
weight_type, vertex_descriptor,
std::greater< weight_type > >
gen_type;
gen_type gen(
choose_param(get_param(arg_pack, boost::distance_zero_t()),
weight_type(0)));
typename boost::result_of< gen_type(
const UndirectedGraph&, const ArgPack&) >::type pq
= gen(g, arg_pack);
boost::dummy_property_map dummy_prop;
return boost::stoer_wagner_min_cut(g, weights,
arg_pack[_parity_map | dummy_prop],
boost::detail::make_property_map_from_arg_pack_gen<
tag::vertex_assignment_map, vertex_descriptor >(
vertex_descriptor())(g, arg_pack),
pq,
boost::detail::override_const_property(
arg_pack, _vertex_index_map, g, vertex_index));
}
};
}
BOOST_GRAPH_MAKE_FORWARDING_FUNCTION(stoer_wagner_min_cut, 2, 4)
}
// Named parameter interface
BOOST_GRAPH_MAKE_OLD_STYLE_PARAMETER_FUNCTION(stoer_wagner_min_cut, 2)
namespace graph
{
// version without IndexMap kept for backwards compatibility
// (but requires vertex_index_t to be defined in the graph)
// Place after the macro to avoid compilation errors
template < class UndirectedGraph, class WeightMap, class ParityMap,
class VertexAssignmentMap, class KeyedUpdatablePriorityQueue >
typename boost::property_traits< WeightMap >::value_type
stoer_wagner_min_cut(const UndirectedGraph& g, WeightMap weights,
ParityMap parities, VertexAssignmentMap assignments,
KeyedUpdatablePriorityQueue& pq)
{
return stoer_wagner_min_cut(
g, weights, parities, assignments, pq, get(vertex_index, g));
}
} // end `namespace graph`
} // end `namespace boost`
#include <boost/graph/iteration_macros_undef.hpp>
#endif // !BOOST_GRAPH_STOER_WAGNER_MIN_CUT_HPP