boost/math/tools/fraction.hpp
// (C) Copyright John Maddock 2005-2006.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_TOOLS_FRACTION_INCLUDED
#define BOOST_MATH_TOOLS_FRACTION_INCLUDED
#ifdef _MSC_VER
#pragma once
#endif
#include <boost/math/tools/precision.hpp>
#include <boost/math/tools/complex.hpp>
#include <type_traits>
#include <cstdint>
#include <cmath>
namespace boost{ namespace math{ namespace tools{
namespace detail
{
template <typename T>
struct is_pair : public std::false_type{};
template <typename T, typename U>
struct is_pair<std::pair<T,U>> : public std::true_type{};
template <typename Gen>
struct fraction_traits_simple
{
using result_type = typename Gen::result_type;
using value_type = typename Gen::result_type;
static result_type a(const value_type&) BOOST_MATH_NOEXCEPT(value_type)
{
return 1;
}
static result_type b(const value_type& v) BOOST_MATH_NOEXCEPT(value_type)
{
return v;
}
};
template <typename Gen>
struct fraction_traits_pair
{
using value_type = typename Gen::result_type;
using result_type = typename value_type::first_type;
static result_type a(const value_type& v) BOOST_MATH_NOEXCEPT(value_type)
{
return v.first;
}
static result_type b(const value_type& v) BOOST_MATH_NOEXCEPT(value_type)
{
return v.second;
}
};
template <typename Gen>
struct fraction_traits
: public std::conditional<
is_pair<typename Gen::result_type>::value,
fraction_traits_pair<Gen>,
fraction_traits_simple<Gen>>::type
{
};
template <typename T, bool = is_complex_type<T>::value>
struct tiny_value
{
// For float, double, and long double, 1/min_value<T>() is finite.
// But for mpfr_float and cpp_bin_float, 1/min_value<T>() is inf.
// Multiply the min by 16 so that the reciprocal doesn't overflow.
static T get() {
return 16*tools::min_value<T>();
}
};
template <typename T>
struct tiny_value<T, true>
{
using value_type = typename T::value_type;
static T get() {
return 16*tools::min_value<value_type>();
}
};
} // namespace detail
//
// continued_fraction_b
// Evaluates:
//
// b0 + a1
// ---------------
// b1 + a2
// ----------
// b2 + a3
// -----
// b3 + ...
//
// Note that the first a0 returned by generator Gen is discarded.
//
template <typename Gen, typename U>
inline typename detail::fraction_traits<Gen>::result_type continued_fraction_b(Gen& g, const U& factor, std::uintmax_t& max_terms)
noexcept(BOOST_MATH_IS_FLOAT(typename detail::fraction_traits<Gen>::result_type) && noexcept(std::declval<Gen>()()))
{
BOOST_MATH_STD_USING // ADL of std names
using traits = detail::fraction_traits<Gen>;
using result_type = typename traits::result_type;
using value_type = typename traits::value_type;
using integer_type = typename integer_scalar_type<result_type>::type;
using scalar_type = typename scalar_type<result_type>::type;
integer_type const zero(0), one(1);
result_type tiny = detail::tiny_value<result_type>::get();
scalar_type terminator = abs(factor);
value_type v = g();
result_type f, C, D, delta;
f = traits::b(v);
if(f == zero)
f = tiny;
C = f;
D = 0;
std::uintmax_t counter(max_terms);
do{
v = g();
D = traits::b(v) + traits::a(v) * D;
if(D == result_type(0))
D = tiny;
C = traits::b(v) + traits::a(v) / C;
if(C == zero)
C = tiny;
D = one/D;
delta = C*D;
f = f * delta;
}while((abs(delta - one) > terminator) && --counter);
max_terms = max_terms - counter;
return f;
}
template <typename Gen, typename U>
inline typename detail::fraction_traits<Gen>::result_type continued_fraction_b(Gen& g, const U& factor)
noexcept(BOOST_MATH_IS_FLOAT(typename detail::fraction_traits<Gen>::result_type) && noexcept(std::declval<Gen>()()))
{
std::uintmax_t max_terms = (std::numeric_limits<std::uintmax_t>::max)();
return continued_fraction_b(g, factor, max_terms);
}
template <typename Gen>
inline typename detail::fraction_traits<Gen>::result_type continued_fraction_b(Gen& g, int bits)
noexcept(BOOST_MATH_IS_FLOAT(typename detail::fraction_traits<Gen>::result_type) && noexcept(std::declval<Gen>()()))
{
BOOST_MATH_STD_USING // ADL of std names
using traits = detail::fraction_traits<Gen>;
using result_type = typename traits::result_type;
result_type factor = ldexp(1.0f, 1 - bits); // 1 / pow(result_type(2), bits);
std::uintmax_t max_terms = (std::numeric_limits<std::uintmax_t>::max)();
return continued_fraction_b(g, factor, max_terms);
}
template <typename Gen>
inline typename detail::fraction_traits<Gen>::result_type continued_fraction_b(Gen& g, int bits, std::uintmax_t& max_terms)
noexcept(BOOST_MATH_IS_FLOAT(typename detail::fraction_traits<Gen>::result_type) && noexcept(std::declval<Gen>()()))
{
BOOST_MATH_STD_USING // ADL of std names
using traits = detail::fraction_traits<Gen>;
using result_type = typename traits::result_type;
result_type factor = ldexp(1.0f, 1 - bits); // 1 / pow(result_type(2), bits);
return continued_fraction_b(g, factor, max_terms);
}
//
// continued_fraction_a
// Evaluates:
//
// a1
// ---------------
// b1 + a2
// ----------
// b2 + a3
// -----
// b3 + ...
//
// Note that the first a1 and b1 returned by generator Gen are both used.
//
template <typename Gen, typename U>
inline typename detail::fraction_traits<Gen>::result_type continued_fraction_a(Gen& g, const U& factor, std::uintmax_t& max_terms)
noexcept(BOOST_MATH_IS_FLOAT(typename detail::fraction_traits<Gen>::result_type) && noexcept(std::declval<Gen>()()))
{
BOOST_MATH_STD_USING // ADL of std names
using traits = detail::fraction_traits<Gen>;
using result_type = typename traits::result_type;
using value_type = typename traits::value_type;
using integer_type = typename integer_scalar_type<result_type>::type;
using scalar_type = typename scalar_type<result_type>::type;
integer_type const zero(0), one(1);
result_type tiny = detail::tiny_value<result_type>::get();
scalar_type terminator = abs(factor);
value_type v = g();
result_type f, C, D, delta, a0;
f = traits::b(v);
a0 = traits::a(v);
if(f == zero)
f = tiny;
C = f;
D = 0;
std::uintmax_t counter(max_terms);
do{
v = g();
D = traits::b(v) + traits::a(v) * D;
if(D == zero)
D = tiny;
C = traits::b(v) + traits::a(v) / C;
if(C == zero)
C = tiny;
D = one/D;
delta = C*D;
f = f * delta;
}while((abs(delta - one) > terminator) && --counter);
max_terms = max_terms - counter;
return a0/f;
}
template <typename Gen, typename U>
inline typename detail::fraction_traits<Gen>::result_type continued_fraction_a(Gen& g, const U& factor)
noexcept(BOOST_MATH_IS_FLOAT(typename detail::fraction_traits<Gen>::result_type) && noexcept(std::declval<Gen>()()))
{
std::uintmax_t max_iter = (std::numeric_limits<std::uintmax_t>::max)();
return continued_fraction_a(g, factor, max_iter);
}
template <typename Gen>
inline typename detail::fraction_traits<Gen>::result_type continued_fraction_a(Gen& g, int bits)
noexcept(BOOST_MATH_IS_FLOAT(typename detail::fraction_traits<Gen>::result_type) && noexcept(std::declval<Gen>()()))
{
BOOST_MATH_STD_USING // ADL of std names
typedef detail::fraction_traits<Gen> traits;
typedef typename traits::result_type result_type;
result_type factor = ldexp(1.0f, 1-bits); // 1 / pow(result_type(2), bits);
std::uintmax_t max_iter = (std::numeric_limits<std::uintmax_t>::max)();
return continued_fraction_a(g, factor, max_iter);
}
template <typename Gen>
inline typename detail::fraction_traits<Gen>::result_type continued_fraction_a(Gen& g, int bits, std::uintmax_t& max_terms)
noexcept(BOOST_MATH_IS_FLOAT(typename detail::fraction_traits<Gen>::result_type) && noexcept(std::declval<Gen>()()))
{
BOOST_MATH_STD_USING // ADL of std names
using traits = detail::fraction_traits<Gen>;
using result_type = typename traits::result_type;
result_type factor = ldexp(1.0f, 1-bits); // 1 / pow(result_type(2), bits);
return continued_fraction_a(g, factor, max_terms);
}
} // namespace tools
} // namespace math
} // namespace boost
#endif // BOOST_MATH_TOOLS_FRACTION_INCLUDED