boost/move/algo/detail/merge.hpp
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2015-2016.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/move for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_MOVE_MERGE_HPP
#define BOOST_MOVE_MERGE_HPP
#include <boost/move/adl_move_swap.hpp>
#include <boost/move/algo/detail/basic_op.hpp>
#include <boost/move/detail/iterator_traits.hpp>
#include <boost/move/detail/destruct_n.hpp>
#include <boost/move/algo/predicate.hpp>
#include <boost/move/algo/detail/search.hpp>
#include <boost/move/detail/iterator_to_raw_pointer.hpp>
#include <cassert>
#include <cstddef>
#if defined(BOOST_CLANG) || (defined(BOOST_GCC) && (BOOST_GCC >= 40600))
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wsign-conversion"
#endif
namespace boost {
namespace movelib {
template<class T, class RandRawIt = T*, class SizeType = typename iter_size<RandRawIt>::type>
class adaptive_xbuf
{
adaptive_xbuf(const adaptive_xbuf &);
adaptive_xbuf & operator=(const adaptive_xbuf &);
#if !defined(UINTPTR_MAX)
typedef std::size_t uintptr_t;
#endif
public:
typedef RandRawIt iterator;
typedef SizeType size_type;
BOOST_MOVE_FORCEINLINE adaptive_xbuf()
: m_ptr(), m_size(0), m_capacity(0)
{}
BOOST_MOVE_FORCEINLINE adaptive_xbuf(RandRawIt raw_memory, size_type cap)
: m_ptr(raw_memory), m_size(0), m_capacity(cap)
{}
template<class RandIt>
void move_assign(RandIt first, size_type n)
{
typedef typename iterator_traits<RandIt>::difference_type rand_diff_t;
if(n <= m_size){
boost::move(first, first+rand_diff_t(n), m_ptr);
size_type sz = m_size;
while(sz-- != n){
m_ptr[sz].~T();
}
m_size = n;
}
else{
RandRawIt result = boost::move(first, first+rand_diff_t(m_size), m_ptr);
boost::uninitialized_move(first+rand_diff_t(m_size), first+rand_diff_t(n), result);
m_size = n;
}
}
template<class RandIt>
void push_back(RandIt first, size_type n)
{
assert(m_capacity - m_size >= n);
boost::uninitialized_move(first, first+n, m_ptr+m_size);
m_size += n;
}
template<class RandIt>
iterator add(RandIt it)
{
assert(m_size < m_capacity);
RandRawIt p_ret = m_ptr + m_size;
::new(&*p_ret) T(::boost::move(*it));
++m_size;
return p_ret;
}
template<class RandIt>
void insert(iterator pos, RandIt it)
{
if(pos == (m_ptr + m_size)){
this->add(it);
}
else{
this->add(m_ptr+m_size-1);
//m_size updated
boost::move_backward(pos, m_ptr+m_size-2, m_ptr+m_size-1);
*pos = boost::move(*it);
}
}
BOOST_MOVE_FORCEINLINE void set_size(size_type sz)
{
m_size = sz;
}
void shrink_to_fit(size_type const sz)
{
if(m_size > sz){
for(size_type szt_i = sz; szt_i != m_size; ++szt_i){
m_ptr[szt_i].~T();
}
m_size = sz;
}
}
void initialize_until(size_type const sz, T &t)
{
assert(m_size < m_capacity);
if(m_size < sz){
BOOST_MOVE_TRY
{
::new((void*)&m_ptr[m_size]) T(::boost::move(t));
++m_size;
for(; m_size != sz; ++m_size){
::new((void*)&m_ptr[m_size]) T(::boost::move(m_ptr[m_size-1]));
}
t = ::boost::move(m_ptr[m_size-1]);
}
BOOST_MOVE_CATCH(...)
{
while(m_size)
{
--m_size;
m_ptr[m_size].~T();
}
}
BOOST_MOVE_CATCH_END
}
}
private:
template<class RIt>
BOOST_MOVE_FORCEINLINE static bool is_raw_ptr(RIt)
{
return false;
}
BOOST_MOVE_FORCEINLINE static bool is_raw_ptr(T*)
{
return true;
}
public:
template<class U>
bool supports_aligned_trailing(size_type sz, size_type trail_count) const
{
if(this->is_raw_ptr(this->data()) && m_capacity){
uintptr_t u_addr_sz = uintptr_t(&*(this->data()+sz));
uintptr_t u_addr_cp = uintptr_t(&*(this->data()+this->capacity()));
u_addr_sz = ((u_addr_sz + sizeof(U)-1)/sizeof(U))*sizeof(U);
return (u_addr_cp >= u_addr_sz) && ((u_addr_cp - u_addr_sz)/sizeof(U) >= trail_count);
}
return false;
}
template<class U>
BOOST_MOVE_FORCEINLINE U *aligned_trailing() const
{
return this->aligned_trailing<U>(this->size());
}
template<class U>
BOOST_MOVE_FORCEINLINE U *aligned_trailing(size_type pos) const
{
uintptr_t u_addr = uintptr_t(&*(this->data()+pos));
u_addr = ((u_addr + sizeof(U)-1)/sizeof(U))*sizeof(U);
return (U*)u_addr;
}
BOOST_MOVE_FORCEINLINE ~adaptive_xbuf()
{
this->clear();
}
BOOST_MOVE_FORCEINLINE size_type capacity() const
{ return m_capacity; }
BOOST_MOVE_FORCEINLINE iterator data() const
{ return m_ptr; }
BOOST_MOVE_FORCEINLINE iterator begin() const
{ return m_ptr; }
BOOST_MOVE_FORCEINLINE iterator end() const
{ return m_ptr+m_size; }
BOOST_MOVE_FORCEINLINE size_type size() const
{ return m_size; }
BOOST_MOVE_FORCEINLINE bool empty() const
{ return !m_size; }
BOOST_MOVE_FORCEINLINE void clear()
{
this->shrink_to_fit(0u);
}
private:
RandRawIt m_ptr;
size_type m_size;
size_type m_capacity;
};
template<class Iterator, class SizeType, class Op>
class range_xbuf
{
range_xbuf(const range_xbuf &);
range_xbuf & operator=(const range_xbuf &);
public:
typedef SizeType size_type;
typedef Iterator iterator;
range_xbuf(Iterator first, Iterator last)
: m_first(first), m_last(first), m_cap(last)
{}
template<class RandIt>
void move_assign(RandIt first, size_type n)
{
assert(size_type(n) <= size_type(m_cap-m_first));
typedef typename iter_difference<RandIt>::type d_type;
m_last = Op()(forward_t(), first, first+d_type(n), m_first);
}
~range_xbuf()
{}
size_type capacity() const
{ return m_cap-m_first; }
Iterator data() const
{ return m_first; }
Iterator end() const
{ return m_last; }
size_type size() const
{ return m_last-m_first; }
bool empty() const
{ return m_first == m_last; }
void clear()
{
m_last = m_first;
}
template<class RandIt>
iterator add(RandIt it)
{
Iterator pos(m_last);
*pos = boost::move(*it);
++m_last;
return pos;
}
void set_size(size_type sz)
{
m_last = m_first;
m_last += sz;
}
private:
Iterator const m_first;
Iterator m_last;
Iterator const m_cap;
};
// @cond
/*
template<typename Unsigned>
inline Unsigned gcd(Unsigned x, Unsigned y)
{
if(0 == ((x &(x-1)) | (y & (y-1)))){
return x < y ? x : y;
}
else{
do
{
Unsigned t = x % y;
x = y;
y = t;
} while (y);
return x;
}
}
*/
//Modified version from "An Optimal In-Place Array Rotation Algorithm", Ching-Kuang Shene
template<typename Unsigned>
Unsigned gcd(Unsigned x, Unsigned y)
{
if(0 == ((x &(x-1)) | (y & (y-1)))){
return x < y ? x : y;
}
else{
Unsigned z = 1;
while((!(x&1)) & (!(y&1))){
z = Unsigned(z << 1);
x = Unsigned(x >> 1);
y = Unsigned(y >> 1);
}
while(x && y){
if(!(x&1))
x = Unsigned(x >> 1);
else if(!(y&1))
y = Unsigned (y >> 1);
else if(x >=y)
x = Unsigned((x-y) >> 1u);
else
y = Unsigned((y-x) >> 1);
}
return Unsigned(z*(x+y));
}
}
template<typename RandIt>
RandIt rotate_gcd(RandIt first, RandIt middle, RandIt last)
{
typedef typename iter_size<RandIt>::type size_type;
typedef typename iterator_traits<RandIt>::value_type value_type;
if(first == middle)
return last;
if(middle == last)
return first;
const size_type middle_pos = size_type(middle - first);
RandIt ret = last - middle_pos;
if (middle == ret){
boost::adl_move_swap_ranges(first, middle, middle);
}
else{
const size_type length = size_type(last - first);
for( RandIt it_i(first), it_gcd(it_i + gcd(length, middle_pos))
; it_i != it_gcd
; ++it_i){
value_type temp(boost::move(*it_i));
RandIt it_j = it_i;
RandIt it_k = it_j+middle_pos;
do{
*it_j = boost::move(*it_k);
it_j = it_k;
size_type const left = size_type(last - it_j);
it_k = left > middle_pos ? it_j + middle_pos : first + middle_pos - left;
} while(it_k != it_i);
*it_j = boost::move(temp);
}
}
return ret;
}
template<class RandIt, class Compare, class Op>
void op_merge_left( RandIt buf_first
, RandIt first1
, RandIt const last1
, RandIt const last2
, Compare comp
, Op op)
{
for(RandIt first2=last1; first2 != last2; ++buf_first){
if(first1 == last1){
op(forward_t(), first2, last2, buf_first);
return;
}
else if(comp(*first2, *first1)){
op(first2, buf_first);
++first2;
}
else{
op(first1, buf_first);
++first1;
}
}
if(buf_first != first1){//In case all remaining elements are in the same place
//(e.g. buffer is exactly the size of the second half
//and all elements from the second half are less)
op(forward_t(), first1, last1, buf_first);
}
}
// [buf_first, first1) -> buffer
// [first1, last1) merge [last1,last2) -> [buf_first,buf_first+(last2-first1))
// Elements from buffer are moved to [last2 - (first1-buf_first), last2)
// Note: distance(buf_first, first1) >= distance(last1, last2), so no overlapping occurs
template<class RandIt, class Compare>
void merge_left
(RandIt buf_first, RandIt first1, RandIt const last1, RandIt const last2, Compare comp)
{
op_merge_left(buf_first, first1, last1, last2, comp, move_op());
}
// [buf_first, first1) -> buffer
// [first1, last1) merge [last1,last2) -> [buf_first,buf_first+(last2-first1))
// Elements from buffer are swapped to [last2 - (first1-buf_first), last2)
// Note: distance(buf_first, first1) >= distance(last1, last2), so no overlapping occurs
template<class RandIt, class Compare>
void swap_merge_left
(RandIt buf_first, RandIt first1, RandIt const last1, RandIt const last2, Compare comp)
{
op_merge_left(buf_first, first1, last1, last2, comp, swap_op());
}
template<class RandIt, class Compare, class Op>
void op_merge_right
(RandIt const first1, RandIt last1, RandIt last2, RandIt buf_last, Compare comp, Op op)
{
RandIt const first2 = last1;
while(first1 != last1){
if(last2 == first2){
op(backward_t(), first1, last1, buf_last);
return;
}
--last2;
--last1;
--buf_last;
if(comp(*last2, *last1)){
op(last1, buf_last);
++last2;
}
else{
op(last2, buf_last);
++last1;
}
}
if(last2 != buf_last){ //In case all remaining elements are in the same place
//(e.g. buffer is exactly the size of the first half
//and all elements from the second half are less)
op(backward_t(), first2, last2, buf_last);
}
}
// [last2, buf_last) - buffer
// [first1, last1) merge [last1,last2) -> [first1+(buf_last-last2), buf_last)
// Note: distance[last2, buf_last) >= distance[first1, last1), so no overlapping occurs
template<class RandIt, class Compare>
void merge_right
(RandIt first1, RandIt last1, RandIt last2, RandIt buf_last, Compare comp)
{
op_merge_right(first1, last1, last2, buf_last, comp, move_op());
}
// [last2, buf_last) - buffer
// [first1, last1) merge [last1,last2) -> [first1+(buf_last-last2), buf_last)
// Note: distance[last2, buf_last) >= distance[first1, last1), so no overlapping occurs
template<class RandIt, class Compare>
void swap_merge_right
(RandIt first1, RandIt last1, RandIt last2, RandIt buf_last, Compare comp)
{
op_merge_right(first1, last1, last2, buf_last, comp, swap_op());
}
///////////////////////////////////////////////////////////////////////////////
//
// BUFFERED MERGE
//
///////////////////////////////////////////////////////////////////////////////
template<class RandIt, class Compare, class Op, class Buf>
void op_buffered_merge
( RandIt first, RandIt const middle, RandIt last
, Compare comp, Op op
, Buf &xbuf)
{
if(first != middle && middle != last && comp(*middle, middle[-1])){
typedef typename iter_size<RandIt>::type size_type;
size_type const len1 = size_type(middle-first);
size_type const len2 = size_type(last-middle);
if(len1 <= len2){
first = boost::movelib::upper_bound(first, middle, *middle, comp);
xbuf.move_assign(first, size_type(middle-first));
op_merge_with_right_placed
(xbuf.data(), xbuf.end(), first, middle, last, comp, op);
}
else{
last = boost::movelib::lower_bound(middle, last, middle[-1], comp);
xbuf.move_assign(middle, size_type(last-middle));
op_merge_with_left_placed
(first, middle, last, xbuf.data(), xbuf.end(), comp, op);
}
}
}
template<class RandIt, class Compare, class XBuf>
void buffered_merge
( RandIt first, RandIt const middle, RandIt last
, Compare comp
, XBuf &xbuf)
{
op_buffered_merge(first, middle, last, comp, move_op(), xbuf);
}
//Complexity: min(len1,len2)^2 + max(len1,len2)
template<class RandIt, class Compare>
void merge_bufferless_ON2(RandIt first, RandIt middle, RandIt last, Compare comp)
{
if((middle - first) < (last - middle)){
while(first != middle){
RandIt const old_last1 = middle;
middle = boost::movelib::lower_bound(middle, last, *first, comp);
first = rotate_gcd(first, old_last1, middle);
if(middle == last){
break;
}
do{
++first;
} while(first != middle && !comp(*middle, *first));
}
}
else{
while(middle != last){
RandIt p = boost::movelib::upper_bound(first, middle, last[-1], comp);
last = rotate_gcd(p, middle, last);
middle = p;
if(middle == first){
break;
}
--p;
do{
--last;
} while(middle != last && !comp(last[-1], *p));
}
}
}
static const std::size_t MergeBufferlessONLogNRotationThreshold = 16u;
template <class RandIt, class Compare>
void merge_bufferless_ONlogN_recursive
( RandIt first, RandIt middle, RandIt last
, typename iter_size<RandIt>::type len1
, typename iter_size<RandIt>::type len2
, Compare comp)
{
typedef typename iter_size<RandIt>::type size_type;
while(1) {
//trivial cases
if (!len2) {
return;
}
else if (!len1) {
return;
}
else if (size_type(len1 | len2) == 1u) {
if (comp(*middle, *first))
adl_move_swap(*first, *middle);
return;
}
else if(size_type(len1+len2) < MergeBufferlessONLogNRotationThreshold){
merge_bufferless_ON2(first, middle, last, comp);
return;
}
RandIt first_cut = first;
RandIt second_cut = middle;
size_type len11 = 0;
size_type len22 = 0;
if (len1 > len2) {
len11 = len1 / 2;
first_cut += len11;
second_cut = boost::movelib::lower_bound(middle, last, *first_cut, comp);
len22 = size_type(second_cut - middle);
}
else {
len22 = len2 / 2;
second_cut += len22;
first_cut = boost::movelib::upper_bound(first, middle, *second_cut, comp);
len11 = size_type(first_cut - first);
}
RandIt new_middle = rotate_gcd(first_cut, middle, second_cut);
//Avoid one recursive call doing a manual tail call elimination on the biggest range
const size_type len_internal = size_type(len11+len22);
if( len_internal < (len1 + len2 - len_internal) ) {
merge_bufferless_ONlogN_recursive(first, first_cut, new_middle, len11, len22, comp);
first = new_middle;
middle = second_cut;
len1 = size_type(len1-len11);
len2 = size_type(len2-len22);
}
else {
merge_bufferless_ONlogN_recursive
(new_middle, second_cut, last, size_type(len1 - len11), size_type(len2 - len22), comp);
middle = first_cut;
last = new_middle;
len1 = len11;
len2 = len22;
}
}
}
//Complexity: NlogN
template<class RandIt, class Compare>
void merge_bufferless_ONlogN(RandIt first, RandIt middle, RandIt last, Compare comp)
{
typedef typename iter_size<RandIt>::type size_type;
merge_bufferless_ONlogN_recursive
(first, middle, last, size_type(middle - first), size_type(last - middle), comp);
}
template<class RandIt, class Compare>
void merge_bufferless(RandIt first, RandIt middle, RandIt last, Compare comp)
{
#define BOOST_ADAPTIVE_MERGE_NLOGN_MERGE
#ifdef BOOST_ADAPTIVE_MERGE_NLOGN_MERGE
merge_bufferless_ONlogN(first, middle, last, comp);
#else
merge_bufferless_ON2(first, middle, last, comp);
#endif //BOOST_ADAPTIVE_MERGE_NLOGN_MERGE
}
// [r_first, r_last) are already in the right part of the destination range.
template <class Compare, class InputIterator, class InputOutIterator, class Op>
void op_merge_with_right_placed
( InputIterator first, InputIterator last
, InputOutIterator dest_first, InputOutIterator r_first, InputOutIterator r_last
, Compare comp, Op op)
{
assert((last - first) == (r_first - dest_first));
while ( first != last ) {
if (r_first == r_last) {
InputOutIterator end = op(forward_t(), first, last, dest_first);
assert(end == r_last);
boost::movelib::ignore(end);
return;
}
else if (comp(*r_first, *first)) {
op(r_first, dest_first);
++r_first;
}
else {
op(first, dest_first);
++first;
}
++dest_first;
}
// Remaining [r_first, r_last) already in the correct place
}
template <class Compare, class InputIterator, class InputOutIterator>
void swap_merge_with_right_placed
( InputIterator first, InputIterator last
, InputOutIterator dest_first, InputOutIterator r_first, InputOutIterator r_last
, Compare comp)
{
op_merge_with_right_placed(first, last, dest_first, r_first, r_last, comp, swap_op());
}
// [first, last) are already in the right part of the destination range.
template <class Compare, class Op, class BidirIterator, class BidirOutIterator>
void op_merge_with_left_placed
( BidirOutIterator const first, BidirOutIterator last, BidirOutIterator dest_last
, BidirIterator const r_first, BidirIterator r_last
, Compare comp, Op op)
{
assert((dest_last - last) == (r_last - r_first));
while( r_first != r_last ) {
if(first == last) {
BidirOutIterator res = op(backward_t(), r_first, r_last, dest_last);
assert(last == res);
boost::movelib::ignore(res);
return;
}
--r_last;
--last;
if(comp(*r_last, *last)){
++r_last;
--dest_last;
op(last, dest_last);
}
else{
++last;
--dest_last;
op(r_last, dest_last);
}
}
// Remaining [first, last) already in the correct place
}
// @endcond
// [first, last) are already in the right part of the destination range.
template <class Compare, class BidirIterator, class BidirOutIterator>
void merge_with_left_placed
( BidirOutIterator const first, BidirOutIterator last, BidirOutIterator dest_last
, BidirIterator const r_first, BidirIterator r_last
, Compare comp)
{
op_merge_with_left_placed(first, last, dest_last, r_first, r_last, comp, move_op());
}
// [r_first, r_last) are already in the right part of the destination range.
template <class Compare, class InputIterator, class InputOutIterator>
void merge_with_right_placed
( InputIterator first, InputIterator last
, InputOutIterator dest_first, InputOutIterator r_first, InputOutIterator r_last
, Compare comp)
{
op_merge_with_right_placed(first, last, dest_first, r_first, r_last, comp, move_op());
}
// [r_first, r_last) are already in the right part of the destination range.
// [dest_first, r_first) is uninitialized memory
template <class Compare, class InputIterator, class InputOutIterator>
void uninitialized_merge_with_right_placed
( InputIterator first, InputIterator last
, InputOutIterator dest_first, InputOutIterator r_first, InputOutIterator r_last
, Compare comp)
{
assert((last - first) == (r_first - dest_first));
typedef typename iterator_traits<InputOutIterator>::value_type value_type;
InputOutIterator const original_r_first = r_first;
destruct_n<value_type, InputOutIterator> d(dest_first);
while ( first != last && dest_first != original_r_first ) {
if (r_first == r_last) {
for(; dest_first != original_r_first; ++dest_first, ++first){
::new((iterator_to_raw_pointer)(dest_first)) value_type(::boost::move(*first));
d.incr();
}
d.release();
InputOutIterator end = ::boost::move(first, last, original_r_first);
assert(end == r_last);
boost::movelib::ignore(end);
return;
}
else if (comp(*r_first, *first)) {
::new((iterator_to_raw_pointer)(dest_first)) value_type(::boost::move(*r_first));
d.incr();
++r_first;
}
else {
::new((iterator_to_raw_pointer)(dest_first)) value_type(::boost::move(*first));
d.incr();
++first;
}
++dest_first;
}
d.release();
merge_with_right_placed(first, last, original_r_first, r_first, r_last, comp);
}
/// This is a helper function for the merge routines.
template<typename BidirectionalIterator1, typename BidirectionalIterator2>
BidirectionalIterator1
rotate_adaptive(BidirectionalIterator1 first,
BidirectionalIterator1 middle,
BidirectionalIterator1 last,
typename iter_size<BidirectionalIterator1>::type len1,
typename iter_size<BidirectionalIterator1>::type len2,
BidirectionalIterator2 buffer,
typename iter_size<BidirectionalIterator1>::type buffer_size)
{
if (len1 > len2 && len2 <= buffer_size)
{
if(len2) //Protect against self-move ranges
{
BidirectionalIterator2 buffer_end = boost::move(middle, last, buffer);
boost::move_backward(first, middle, last);
return boost::move(buffer, buffer_end, first);
}
else
return first;
}
else if (len1 <= buffer_size)
{
if(len1) //Protect against self-move ranges
{
BidirectionalIterator2 buffer_end = boost::move(first, middle, buffer);
BidirectionalIterator1 ret = boost::move(middle, last, first);
boost::move(buffer, buffer_end, ret);
return ret;
}
else
return last;
}
else
return rotate_gcd(first, middle, last);
}
template<typename BidirectionalIterator,
typename Pointer, typename Compare>
void merge_adaptive_ONlogN_recursive
(BidirectionalIterator first,
BidirectionalIterator middle,
BidirectionalIterator last,
typename iter_size<BidirectionalIterator>::type len1,
typename iter_size<BidirectionalIterator>::type len2,
Pointer buffer,
typename iter_size<BidirectionalIterator>::type buffer_size,
Compare comp)
{
typedef typename iter_size<BidirectionalIterator>::type size_type;
//trivial cases
if (!len2 || !len1) {
// no-op
}
else if (len1 <= buffer_size || len2 <= buffer_size) {
range_xbuf<Pointer, size_type, move_op> rxbuf(buffer, buffer + buffer_size);
buffered_merge(first, middle, last, comp, rxbuf);
}
else if (size_type(len1 + len2) == 2u) {
if (comp(*middle, *first))
adl_move_swap(*first, *middle);
}
else if (size_type(len1 + len2) < MergeBufferlessONLogNRotationThreshold) {
merge_bufferless_ON2(first, middle, last, comp);
}
else {
BidirectionalIterator first_cut = first;
BidirectionalIterator second_cut = middle;
size_type len11 = 0;
size_type len22 = 0;
if (len1 > len2) //(len1 < len2)
{
len11 = len1 / 2;
first_cut += len11;
second_cut = boost::movelib::lower_bound(middle, last, *first_cut, comp);
len22 = size_type(second_cut - middle);
}
else
{
len22 = len2 / 2;
second_cut += len22;
first_cut = boost::movelib::upper_bound(first, middle, *second_cut, comp);
len11 = size_type(first_cut - first);
}
BidirectionalIterator new_middle
= rotate_adaptive(first_cut, middle, second_cut,
size_type(len1 - len11), len22, buffer,
buffer_size);
merge_adaptive_ONlogN_recursive(first, first_cut, new_middle, len11,
len22, buffer, buffer_size, comp);
merge_adaptive_ONlogN_recursive(new_middle, second_cut, last,
size_type(len1 - len11), size_type(len2 - len22), buffer, buffer_size, comp);
}
}
template<typename BidirectionalIterator, typename Compare, typename RandRawIt>
void merge_adaptive_ONlogN(BidirectionalIterator first,
BidirectionalIterator middle,
BidirectionalIterator last,
Compare comp,
RandRawIt uninitialized,
typename iter_size<BidirectionalIterator>::type uninitialized_len)
{
typedef typename iterator_traits<BidirectionalIterator>::value_type value_type;
typedef typename iter_size<BidirectionalIterator>::type size_type;
if (first == middle || middle == last)
return;
if(uninitialized_len)
{
const size_type len1 = size_type(middle - first);
const size_type len2 = size_type(last - middle);
::boost::movelib::adaptive_xbuf<value_type, RandRawIt> xbuf(uninitialized, uninitialized_len);
xbuf.initialize_until(uninitialized_len, *first);
merge_adaptive_ONlogN_recursive(first, middle, last, len1, len2, xbuf.begin(), uninitialized_len, comp);
}
else
{
merge_bufferless(first, middle, last, comp);
}
}
} //namespace movelib {
} //namespace boost {
#if defined(BOOST_CLANG) || (defined(BOOST_GCC) && (BOOST_GCC >= 40600))
#pragma GCC diagnostic pop
#endif
#endif //#define BOOST_MOVE_MERGE_HPP