boost/move/algo/detail/pdqsort.hpp
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Orson Peters 2017.
// (C) Copyright Ion Gaztanaga 2017-2018.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/move for documentation.
//
//////////////////////////////////////////////////////////////////////////////
//
// This implementation of Pattern-defeating quicksort (pdqsort) was written
// by Orson Peters, and discussed in the Boost mailing list:
// http://boost.2283326.n4.nabble.com/sort-pdqsort-td4691031.html
//
// This implementation is the adaptation by Ion Gaztanaga of code originally in GitHub
// with permission from the author to relicense it under the Boost Software License
// (see the Boost mailing list for details).
//
// The original copyright statement is pasted here for completeness:
//
// pdqsort.h - Pattern-defeating quicksort.
// Copyright (c) 2015 Orson Peters
// This software is provided 'as-is', without any express or implied warranty. In no event will the
// authors be held liable for any damages arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose, including commercial
// applications, and to alter it and redistribute it freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not claim that you wrote the
// original software. If you use this software in a product, an acknowledgment in the product
// documentation would be appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be misrepresented as
// being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_MOVE_ALGO_PDQSORT_HPP
#define BOOST_MOVE_ALGO_PDQSORT_HPP
#ifndef BOOST_CONFIG_HPP
# include <boost/config.hpp>
#endif
#
#if defined(BOOST_HAS_PRAGMA_ONCE)
# pragma once
#endif
#include <boost/move/detail/config_begin.hpp>
#include <boost/move/detail/workaround.hpp>
#include <boost/move/utility_core.hpp>
#include <boost/move/algo/detail/insertion_sort.hpp>
#include <boost/move/algo/detail/heap_sort.hpp>
#include <boost/move/detail/iterator_traits.hpp>
#include <boost/move/adl_move_swap.hpp>
#include <cstddef>
#if defined(BOOST_CLANG) || (defined(BOOST_GCC) && (BOOST_GCC >= 40600))
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wsign-conversion"
#endif
namespace boost {
namespace movelib {
namespace pdqsort_detail {
//A simple pair implementation to avoid including <utility>
template<class T1, class T2>
struct pair
{
pair()
{}
pair(const T1 &t1, const T2 &t2)
: first(t1), second(t2)
{}
T1 first;
T2 second;
};
enum {
// Partitions below this size are sorted using insertion sort.
insertion_sort_threshold = 24,
// Partitions above this size use Tukey's ninther to select the pivot.
ninther_threshold = 128,
// When we detect an already sorted partition, attempt an insertion sort that allows this
// amount of element moves before giving up.
partial_insertion_sort_limit = 8,
// Must be multiple of 8 due to loop unrolling, and < 256 to fit in unsigned char.
block_size = 64,
// Cacheline size, assumes power of two.
cacheline_size = 64
};
// Returns floor(log2(n)), assumes n > 0.
template<class Unsigned>
Unsigned log2(Unsigned n) {
Unsigned log = 0;
while (n >>= 1) ++log;
return log;
}
// Attempts to use insertion sort on [begin, end). Will return false if more than
// partial_insertion_sort_limit elements were moved, and abort sorting. Otherwise it will
// successfully sort and return true.
template<class Iter, class Compare>
inline bool partial_insertion_sort(Iter begin, Iter end, Compare comp) {
typedef typename boost::movelib::iterator_traits<Iter>::value_type T;
typedef typename boost::movelib:: iter_size<Iter>::type size_type;
if (begin == end) return true;
size_type limit = 0;
for (Iter cur = begin + 1; cur != end; ++cur) {
if (limit > partial_insertion_sort_limit) return false;
Iter sift = cur;
Iter sift_1 = cur - 1;
// Compare first so we can avoid 2 moves for an element already positioned correctly.
if (comp(*sift, *sift_1)) {
T tmp = boost::move(*sift);
do { *sift-- = boost::move(*sift_1); }
while (sift != begin && comp(tmp, *--sift_1));
*sift = boost::move(tmp);
limit += size_type(cur - sift);
}
}
return true;
}
template<class Iter, class Compare>
inline void sort2(Iter a, Iter b, Compare comp) {
if (comp(*b, *a)) boost::adl_move_iter_swap(a, b);
}
// Sorts the elements *a, *b and *c using comparison function comp.
template<class Iter, class Compare>
inline void sort3(Iter a, Iter b, Iter c, Compare comp) {
sort2(a, b, comp);
sort2(b, c, comp);
sort2(a, b, comp);
}
// Partitions [begin, end) around pivot *begin using comparison function comp. Elements equal
// to the pivot are put in the right-hand partition. Returns the position of the pivot after
// partitioning and whether the passed sequence already was correctly partitioned. Assumes the
// pivot is a median of at least 3 elements and that [begin, end) is at least
// insertion_sort_threshold long.
template<class Iter, class Compare>
pdqsort_detail::pair<Iter, bool> partition_right(Iter begin, Iter end, Compare comp) {
typedef typename boost::movelib::iterator_traits<Iter>::value_type T;
// Move pivot into local for speed.
T pivot(boost::move(*begin));
Iter first = begin;
Iter last = end;
// Find the first element greater than or equal than the pivot (the median of 3 guarantees
// this exists).
while (comp(*++first, pivot));
// Find the first element strictly smaller than the pivot. We have to guard this search if
// there was no element before *first.
if (first - 1 == begin) while (first < last && !comp(*--last, pivot));
else while ( !comp(*--last, pivot));
// If the first pair of elements that should be swapped to partition are the same element,
// the passed in sequence already was correctly partitioned.
bool already_partitioned = first >= last;
// Keep swapping pairs of elements that are on the wrong side of the pivot. Previously
// swapped pairs guard the searches, which is why the first iteration is special-cased
// above.
while (first < last) {
boost::adl_move_iter_swap(first, last);
while (comp(*++first, pivot));
while (!comp(*--last, pivot));
}
// Put the pivot in the right place.
Iter pivot_pos = first - 1;
if(begin != pivot_pos) //Avoid potential self-move
*begin = boost::move(*pivot_pos);
*pivot_pos = boost::move(pivot);
return pdqsort_detail::pair<Iter, bool>(pivot_pos, already_partitioned);
}
// Similar function to the one above, except elements equal to the pivot are put to the left of
// the pivot and it doesn't check or return if the passed sequence already was partitioned.
// Since this is rarely used (the many equal case), and in that case pdqsort already has O(n)
// performance, no block quicksort is applied here for simplicity.
template<class Iter, class Compare>
inline Iter partition_left(Iter begin, Iter end, Compare comp) {
typedef typename boost::movelib::iterator_traits<Iter>::value_type T;
T pivot(boost::move(*begin));
Iter first = begin;
Iter last = end;
while (comp(pivot, *--last));
if (last + 1 == end) while (first < last && !comp(pivot, *++first));
else while ( !comp(pivot, *++first));
while (first < last) {
boost::adl_move_iter_swap(first, last);
while (comp(pivot, *--last));
while (!comp(pivot, *++first));
}
Iter pivot_pos = last;
*begin = boost::move(*pivot_pos);
*pivot_pos = boost::move(pivot);
return pivot_pos;
}
template<class Iter, class Compare>
void pdqsort_loop( Iter begin, Iter end, Compare comp
, typename boost::movelib:: iter_size<Iter>::type bad_allowed
, bool leftmost = true)
{
typedef typename boost::movelib:: iter_size<Iter>::type size_type;
// Use a while loop for tail recursion elimination.
while (true) {
size_type size = size_type(end - begin);
// Insertion sort is faster for small arrays.
if (size < insertion_sort_threshold) {
insertion_sort(begin, end, comp);
return;
}
// Choose pivot as median of 3 or pseudomedian of 9.
size_type s2 = size / 2;
if (size > ninther_threshold) {
sort3(begin, begin + s2, end - 1, comp);
sort3(begin + 1, begin + (s2 - 1), end - 2, comp);
sort3(begin + 2, begin + (s2 + 1), end - 3, comp);
sort3(begin + (s2 - 1), begin + s2, begin + (s2 + 1), comp);
boost::adl_move_iter_swap(begin, begin + s2);
} else sort3(begin + s2, begin, end - 1, comp);
// If *(begin - 1) is the end of the right partition of a previous partition operation
// there is no element in [begin, end) that is smaller than *(begin - 1). Then if our
// pivot compares equal to *(begin - 1) we change strategy, putting equal elements in
// the left partition, greater elements in the right partition. We do not have to
// recurse on the left partition, since it's sorted (all equal).
if (!leftmost && !comp(*(begin - 1), *begin)) {
begin = partition_left(begin, end, comp) + 1;
continue;
}
// Partition and get results.
pdqsort_detail::pair<Iter, bool> part_result = partition_right(begin, end, comp);
Iter pivot_pos = part_result.first;
bool already_partitioned = part_result.second;
// Check for a highly unbalanced partition.
size_type l_size = size_type(pivot_pos - begin);
size_type r_size = size_type(end - (pivot_pos + 1));
bool highly_unbalanced = l_size < size / 8 || r_size < size / 8;
// If we got a highly unbalanced partition we shuffle elements to break many patterns.
if (highly_unbalanced) {
// If we had too many bad partitions, switch to heapsort to guarantee O(n log n).
if (--bad_allowed == 0) {
boost::movelib::heap_sort(begin, end, comp);
return;
}
if (l_size >= insertion_sort_threshold) {
boost::adl_move_iter_swap(begin, begin + l_size / 4);
boost::adl_move_iter_swap(pivot_pos - 1, pivot_pos - l_size / 4);
if (l_size > ninther_threshold) {
boost::adl_move_iter_swap(begin + 1, begin + (l_size / 4 + 1));
boost::adl_move_iter_swap(begin + 2, begin + (l_size / 4 + 2));
boost::adl_move_iter_swap(pivot_pos - 2, pivot_pos - (l_size / 4 + 1));
boost::adl_move_iter_swap(pivot_pos - 3, pivot_pos - (l_size / 4 + 2));
}
}
if (r_size >= insertion_sort_threshold) {
boost::adl_move_iter_swap(pivot_pos + 1, pivot_pos + (1 + r_size / 4));
boost::adl_move_iter_swap(end - 1, end - r_size / 4);
if (r_size > ninther_threshold) {
boost::adl_move_iter_swap(pivot_pos + 2, pivot_pos + (2 + r_size / 4));
boost::adl_move_iter_swap(pivot_pos + 3, pivot_pos + (3 + r_size / 4));
boost::adl_move_iter_swap(end - 2, end - (1 + r_size / 4));
boost::adl_move_iter_swap(end - 3, end - (2 + r_size / 4));
}
}
} else {
// If we were decently balanced and we tried to sort an already partitioned
// sequence try to use insertion sort.
if (already_partitioned && partial_insertion_sort(begin, pivot_pos, comp)
&& partial_insertion_sort(pivot_pos + 1, end, comp)) return;
}
// Sort the left partition first using recursion and do tail recursion elimination for
// the right-hand partition.
pdqsort_loop<Iter, Compare>(begin, pivot_pos, comp, bad_allowed, leftmost);
begin = pivot_pos + 1;
leftmost = false;
}
}
}
template<class Iter, class Compare>
void pdqsort(Iter begin, Iter end, Compare comp)
{
if (begin == end) return;
typedef typename boost::movelib:: iter_size<Iter>::type size_type;
pdqsort_detail::pdqsort_loop<Iter, Compare>(begin, end, comp, pdqsort_detail::log2(size_type(end - begin)));
}
} //namespace movelib {
} //namespace boost {
#if defined(BOOST_CLANG) || (defined(BOOST_GCC) && (BOOST_GCC >= 40600))
#pragma GCC diagnostic pop
#endif
#include <boost/move/detail/config_end.hpp>
#endif //BOOST_MOVE_ALGO_PDQSORT_HPP