boost/multiprecision/cpp_bin_float/io.hpp
///////////////////////////////////////////////////////////////
// Copyright 2013 John Maddock. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at https://www.boost.org/LICENSE_1_0.txt
#ifndef BOOST_MP_CPP_BIN_FLOAT_IO_HPP
#define BOOST_MP_CPP_BIN_FLOAT_IO_HPP
#include <boost/multiprecision/detail/no_exceptions_support.hpp>
#include <boost/multiprecision/detail/assert.hpp>
namespace boost { namespace multiprecision {
namespace cpp_bf_io_detail {
//
// Multiplies a by b and shifts the result so it fits inside max_bits bits,
// returns by how much the result was shifted.
//
template <class I>
inline I restricted_multiply(cpp_int& result, const cpp_int& a, const cpp_int& b, I max_bits, std::int64_t& error)
{
using local_integral_type = I;
result = a * b;
local_integral_type gb = static_cast<local_integral_type>(msb(result));
local_integral_type rshift = 0;
if (gb > max_bits)
{
rshift = gb - max_bits;
local_integral_type lb = static_cast<local_integral_type>(lsb(result));
int roundup = 0;
// The error rate increases by the error of both a and b,
// this may be overly pessimistic in many case as we're assuming
// that a and b have the same level of uncertainty...
if (lb < rshift)
error = error ? error * 2 : 1;
if (rshift)
{
BOOST_MP_ASSERT(rshift < INT_MAX);
if (bit_test(result, static_cast<unsigned>(rshift - 1)))
{
if (lb == rshift - 1)
roundup = 1;
else
roundup = 2;
}
result >>= rshift;
}
if ((roundup == 2) || ((roundup == 1) && (result.backend().limbs()[0] & 1)))
++result;
}
return rshift;
}
//
// Computes a^e shifted to the right so it fits in max_bits, returns how far
// to the right we are shifted.
//
template <class I>
inline I restricted_pow(cpp_int& result, const cpp_int& a, I e, I max_bits, std::int64_t& error)
{
BOOST_MP_ASSERT(&result != &a);
I exp = 0;
if (e == 1)
{
result = a;
return exp;
}
else if (e == 2)
{
return restricted_multiply(result, a, a, max_bits, error);
}
else if (e == 3)
{
exp = restricted_multiply(result, a, a, max_bits, error);
exp += restricted_multiply(result, result, a, max_bits, error);
return exp;
}
I p = e / 2;
exp = restricted_pow(result, a, p, max_bits, error);
exp *= 2;
exp += restricted_multiply(result, result, result, max_bits, error);
if (e & 1)
exp += restricted_multiply(result, result, a, max_bits, error);
return exp;
}
inline int get_round_mode(const cpp_int& what, std::int64_t location, std::int64_t error)
{
//
// Can we round what at /location/, if the error in what is /error/ in
// units of 0.5ulp. Return:
//
// -1: Can't round.
// 0: leave as is.
// 1: tie.
// 2: round up.
//
BOOST_MP_ASSERT(location >= 0);
BOOST_MP_ASSERT(location < INT_MAX);
std::int64_t error_radius = error & 1 ? (1 + error) / 2 : error / 2;
if (error_radius && (static_cast<int>(msb(error_radius)) >= location))
return -1;
if (bit_test(what, static_cast<unsigned>(location)))
{
if (static_cast<int>(lsb(what)) == location)
return error ? -1 : 1; // Either a tie or can't round depending on whether we have any error
if (!error)
return 2; // no error, round up.
cpp_int t = what - error_radius;
if (static_cast<int>(lsb(t)) >= location)
return -1;
return 2;
}
else if (error)
{
cpp_int t = what + error_radius;
return bit_test(t, static_cast<unsigned>(location)) ? -1 : 0;
}
return 0;
}
inline int get_round_mode(cpp_int& r, cpp_int& d, std::int64_t error, const cpp_int& q)
{
//
// Lets suppose we have an inexact division by d+delta, where the true
// value for the divisor is d, and with |delta| <= error/2, then
// we have calculated q and r such that:
//
// n r
// --- = q + -----------
// d + error d + error
//
// Rearranging for n / d we get:
//
// n delta*q + r
// --- = q + -------------
// d d
//
// So rounding depends on whether 2r + error * q > d.
//
// We return:
// 0 = down down.
// 1 = tie.
// 2 = round up.
// -1 = couldn't decide.
//
r <<= 1;
int c = r.compare(d);
if (c == 0)
return error ? -1 : 1;
if (c > 0)
{
if (error)
{
r -= error * q;
return r.compare(d) > 0 ? 2 : -1;
}
return 2;
}
if (error)
{
r += error * q;
return r.compare(d) < 0 ? 0 : -1;
}
return 0;
}
} // namespace cpp_bf_io_detail
namespace backends {
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE>
cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>& cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::operator=(const char* s)
{
cpp_int n;
std::intmax_t decimal_exp = 0;
std::intmax_t digits_seen = 0;
constexpr std::intmax_t max_digits_seen = 4 + (cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count * 301L) / 1000;
bool ss = false;
//
// Extract the sign:
//
if (*s == '-')
{
ss = true;
++s;
}
else if (*s == '+')
++s;
//
// Special cases first:
//
if ((std::strcmp(s, "nan") == 0) || (std::strcmp(s, "NaN") == 0) || (std::strcmp(s, "NAN") == 0))
{
return *this = std::numeric_limits<number<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> > >::quiet_NaN().backend();
}
if ((std::strcmp(s, "inf") == 0) || (std::strcmp(s, "Inf") == 0) || (std::strcmp(s, "INF") == 0) || (std::strcmp(s, "infinity") == 0) || (std::strcmp(s, "Infinity") == 0) || (std::strcmp(s, "INFINITY") == 0))
{
*this = std::numeric_limits<number<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> > >::infinity().backend();
if (ss)
negate();
return *this;
}
//
// Digits before the point:
//
while (*s && (*s >= '0') && (*s <= '9'))
{
n *= 10u;
n += *s - '0';
if (digits_seen || (*s != '0'))
++digits_seen;
++s;
}
// The decimal point (we really should localise this!!)
if (*s && (*s == '.'))
++s;
//
// Digits after the point:
//
while (*s && (*s >= '0') && (*s <= '9'))
{
n *= 10u;
n += *s - '0';
--decimal_exp;
if (digits_seen || (*s != '0'))
++digits_seen;
++s;
if (digits_seen > max_digits_seen)
break;
}
//
// Digits we're skipping:
//
while (*s && (*s >= '0') && (*s <= '9'))
++s;
//
// See if there's an exponent:
//
if (*s && ((*s == 'e') || (*s == 'E')))
{
++s;
std::intmax_t e = 0;
bool es = false;
if (*s && (*s == '-'))
{
es = true;
++s;
}
else if (*s && (*s == '+'))
++s;
while (*s && (*s >= '0') && (*s <= '9'))
{
e *= 10u;
e += *s - '0';
++s;
}
if (es)
e = -e;
decimal_exp += e;
}
if (*s)
{
//
// Oops unexpected input at the end of the number:
//
BOOST_MP_THROW_EXCEPTION(std::runtime_error("Unable to parse string as a valid floating point number."));
}
if (n == 0)
{
// Result is necessarily zero:
*this = static_cast<limb_type>(0u);
return *this;
}
constexpr std::size_t limb_bits = sizeof(limb_type) * CHAR_BIT;
//
// Set our working precision - this is heuristic based, we want
// a value as small as possible > cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count to avoid large computations
// and excessive memory usage, but we also want to avoid having to
// up the computation and start again at a higher precision.
// So we round cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count up to the nearest whole number of limbs, and add
// one limb for good measure. This works very well for small exponents,
// but for larger exponents we may may need to restart, we could add some
// extra precision right from the start for larger exponents, but this
// seems to be slightly slower in the *average* case:
//
#ifdef BOOST_MP_STRESS_IO
std::intmax_t max_bits = cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count + 32;
#else
std::intmax_t max_bits = cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count + ((cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count % limb_bits) ? (limb_bits - cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count % limb_bits) : 0) + limb_bits;
#endif
std::int64_t error = 0;
std::intmax_t calc_exp = 0;
std::intmax_t final_exponent = 0;
if (decimal_exp >= 0)
{
// Nice and simple, the result is an integer...
do
{
cpp_int t;
if (decimal_exp)
{
calc_exp = boost::multiprecision::cpp_bf_io_detail::restricted_pow(t, cpp_int(5), decimal_exp, max_bits, error);
calc_exp += boost::multiprecision::cpp_bf_io_detail::restricted_multiply(t, t, n, max_bits, error);
}
else
t = n;
final_exponent = (std::int64_t)cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count - 1 + decimal_exp + calc_exp;
std::ptrdiff_t rshift = static_cast<std::ptrdiff_t>(static_cast<std::ptrdiff_t>(msb(t)) - static_cast<std::ptrdiff_t>(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count) + 1);
if (rshift > 0)
{
final_exponent += rshift;
int roundup = boost::multiprecision::cpp_bf_io_detail::get_round_mode(t, rshift - 1, error);
t >>= rshift;
if ((roundup == 2) || ((roundup == 1) && t.backend().limbs()[0] & 1))
++t;
else if (roundup < 0)
{
#ifdef BOOST_MP_STRESS_IO
max_bits += 32;
#else
max_bits *= 2;
#endif
error = 0;
continue;
}
}
else
{
BOOST_MP_ASSERT(!error);
}
if (final_exponent > cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::max_exponent)
{
exponent() = cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::max_exponent;
final_exponent -= cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::max_exponent;
}
else if (final_exponent < cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::min_exponent)
{
// Underflow:
exponent() = cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::min_exponent;
final_exponent -= cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::min_exponent;
}
else
{
exponent() = static_cast<Exponent>(final_exponent);
final_exponent = 0;
}
copy_and_round(*this, t.backend());
break;
} while (true);
if (ss != sign())
negate();
}
else
{
// Result is the ratio of two integers: we need to organise the
// division so as to produce at least an N-bit result which we can
// round according to the remainder.
//cpp_int d = pow(cpp_int(5), -decimal_exp);
do
{
cpp_int d;
calc_exp = boost::multiprecision::cpp_bf_io_detail::restricted_pow(d, cpp_int(5), -decimal_exp, max_bits, error);
const std::ptrdiff_t shift = static_cast<std::ptrdiff_t>(static_cast<std::ptrdiff_t>(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count) - static_cast<std::ptrdiff_t>(msb(n)) + static_cast<std::ptrdiff_t>(msb(d)));
final_exponent = cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count - 1 + decimal_exp - calc_exp;
if (shift > 0)
{
n <<= shift;
final_exponent -= static_cast<Exponent>(shift);
}
cpp_int q, r;
divide_qr(n, d, q, r);
std::ptrdiff_t gb = static_cast<std::ptrdiff_t>(msb(q));
BOOST_MP_ASSERT((gb >= static_cast<int>(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count) - 1));
//
// Check for rounding conditions we have to
// handle ourselves:
//
int roundup = 0;
if (gb == cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count - 1)
{
// Exactly the right number of bits, use the remainder to round:
roundup = boost::multiprecision::cpp_bf_io_detail::get_round_mode(r, d, error, q);
}
else if (bit_test(q, static_cast<std::size_t>(gb - static_cast<std::ptrdiff_t>(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count))) && (static_cast<std::ptrdiff_t>(lsb(q)) == static_cast<std::ptrdiff_t>(gb - static_cast<std::ptrdiff_t>(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count))))
{
// Too many bits in q and the bits in q indicate a tie, but we can break that using r,
// note that the radius of error in r is error/2 * q:
std::ptrdiff_t lshift = gb - static_cast<int>(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count) + 1;
q >>= lshift;
final_exponent += static_cast<Exponent>(lshift);
BOOST_MP_ASSERT((msb(q) >= cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count - 1));
if (error && (r < (error / 2) * q))
roundup = -1;
else if (error && (r + (error / 2) * q >= d))
roundup = -1;
else
roundup = r ? 2 : 1;
}
else if (error && (((error / 2) * q + r >= d) || (r < (error / 2) * q)))
{
// We might have been rounding up, or got the wrong quotient: can't tell!
roundup = -1;
}
if (roundup < 0)
{
#ifdef BOOST_MP_STRESS_IO
max_bits += 32;
#else
max_bits *= 2;
#endif
error = 0;
if (shift > 0)
{
n >>= shift;
final_exponent += static_cast<Exponent>(shift);
}
continue;
}
else if ((roundup == 2) || ((roundup == 1) && q.backend().limbs()[0] & 1))
++q;
if (final_exponent > cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::max_exponent)
{
// Overflow:
exponent() = cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::max_exponent;
final_exponent -= cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::max_exponent;
}
else if (final_exponent < cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::min_exponent)
{
// Underflow:
exponent() = cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::min_exponent;
final_exponent -= cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::min_exponent;
}
else
{
exponent() = static_cast<Exponent>(final_exponent);
final_exponent = 0;
}
copy_and_round(*this, q.backend());
if (ss != sign())
negate();
break;
} while (true);
}
//
// Check for scaling and/or over/under-flow:
//
final_exponent += exponent();
if (final_exponent > cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::max_exponent)
{
// Overflow:
exponent() = cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_infinity;
bits() = limb_type(0);
}
else if (final_exponent < cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::min_exponent)
{
// Underflow:
exponent() = cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_zero;
bits() = limb_type(0);
sign() = 0;
}
else
{
exponent() = static_cast<Exponent>(final_exponent);
}
return *this;
}
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE>
std::string cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::str(std::streamsize dig, std::ios_base::fmtflags f) const
{
bool scientific = (f & std::ios_base::scientific) == std::ios_base::scientific;
bool fixed = !scientific && (f & std::ios_base::fixed);
if (dig == 0 && !fixed)
dig = std::numeric_limits<number<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> > >::max_digits10;
std::string s;
if (exponent() <= cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::max_exponent)
{
// How far to left-shift in order to demormalise the mantissa:
std::intmax_t shift = (std::intmax_t)cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count - (std::intmax_t)exponent() - 1;
std::intmax_t digits_wanted = static_cast<int>(dig);
std::intmax_t base10_exp = exponent() >= 0 ? static_cast<std::intmax_t>(std::floor(0.30103 * exponent())) : static_cast<std::intmax_t>(std::ceil(0.30103 * exponent()));
//
// For fixed formatting we want /dig/ digits after the decimal point,
// so if the exponent is zero, allowing for the one digit before the
// decimal point, we want 1 + dig digits etc.
//
if (fixed)
digits_wanted += 1 + base10_exp;
if (scientific)
digits_wanted += 1;
if (digits_wanted < -1)
{
// Fixed precision, no significant digits, and nothing to round!
s = "0";
if (sign())
s.insert(static_cast<std::string::size_type>(0), 1, '-');
boost::multiprecision::detail::format_float_string(s, base10_exp, dig, f, true);
return s;
}
//
// power10 is the base10 exponent we need to multiply/divide by in order
// to convert our denormalised number to an integer with the right number of digits:
//
std::intmax_t power10 = digits_wanted - base10_exp - 1;
//
// If we calculate 5^power10 rather than 10^power10 we need to move
// 2^power10 into /shift/
//
shift -= power10;
cpp_int i;
int roundup = 0; // 0=no rounding, 1=tie, 2=up
constexpr std::size_t limb_bits = sizeof(limb_type) * CHAR_BIT;
//
// Set our working precision - this is heuristic based, we want
// a value as small as possible > cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count to avoid large computations
// and excessive memory usage, but we also want to avoid having to
// up the computation and start again at a higher precision.
// So we round cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count up to the nearest whole number of limbs, and add
// one limb for good measure. This works very well for small exponents,
// but for larger exponents we add a few extra limbs to max_bits:
//
#ifdef BOOST_MP_STRESS_IO
std::intmax_t max_bits = cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count + 32;
#else
std::intmax_t max_bits = cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count + ((cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count % limb_bits) ? (limb_bits - cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count % limb_bits) : 0) + limb_bits;
if (power10)
{
const std::uintmax_t abs_power10 = static_cast<std::uintmax_t>(boost::multiprecision::detail::abs(power10));
const std::intmax_t msb_div8 = static_cast<std::intmax_t>(msb(abs_power10) / 8u);
max_bits += (msb_div8 * static_cast<std::intmax_t>(limb_bits));
}
#endif
do
{
std::int64_t error = 0;
std::intmax_t calc_exp = 0;
//
// Our integer result is: bits() * 2^-shift * 5^power10
//
i = bits();
if (shift < 0)
{
if (power10 >= 0)
{
// We go straight to the answer with all integer arithmetic,
// the result is always exact and never needs rounding:
BOOST_MP_ASSERT(power10 <= (std::intmax_t)INT_MAX);
i <<= -shift;
if (power10)
i *= pow(cpp_int(5), static_cast<unsigned>(power10));
}
else if (power10 < 0)
{
cpp_int d;
calc_exp = boost::multiprecision::cpp_bf_io_detail::restricted_pow(d, cpp_int(5), -power10, max_bits, error);
shift += calc_exp;
BOOST_MP_ASSERT(shift < 0); // Must still be true!
i <<= -shift;
cpp_int r;
divide_qr(i, d, i, r);
roundup = boost::multiprecision::cpp_bf_io_detail::get_round_mode(r, d, error, i);
if (roundup < 0)
{
#ifdef BOOST_MP_STRESS_IO
max_bits += 32;
#else
max_bits *= 2;
#endif
shift = (std::intmax_t)cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count - exponent() - 1 - power10;
continue;
}
}
}
else
{
//
// Our integer is bits() * 2^-shift * 10^power10
//
if (power10 > 0)
{
if (power10)
{
cpp_int t;
calc_exp = boost::multiprecision::cpp_bf_io_detail::restricted_pow(t, cpp_int(5), power10, max_bits, error);
calc_exp += boost::multiprecision::cpp_bf_io_detail::restricted_multiply(i, i, t, max_bits, error);
shift -= calc_exp;
}
if ((shift < 0) || ((shift == 0) && error))
{
// We only get here if we were asked for a crazy number of decimal digits -
// more than are present in a 2^max_bits number.
#ifdef BOOST_MP_STRESS_IO
max_bits += 32;
#else
max_bits *= 2;
#endif
shift = (std::intmax_t)cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count - exponent() - 1 - power10;
continue;
}
if (shift)
{
roundup = boost::multiprecision::cpp_bf_io_detail::get_round_mode(i, shift - 1, error);
if (roundup < 0)
{
#ifdef BOOST_MP_STRESS_IO
max_bits += 32;
#else
max_bits *= 2;
#endif
shift = (std::intmax_t)cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count - exponent() - 1 - power10;
continue;
}
i >>= shift;
}
}
else
{
// We're right shifting, *and* dividing by 5^-power10,
// so 5^-power10 can never be that large or we'd simply
// get zero as a result, and that case is already handled above:
cpp_int r;
BOOST_MP_ASSERT(-power10 < INT_MAX);
cpp_int d = pow(cpp_int(5), static_cast<unsigned>(-power10));
d <<= shift;
divide_qr(i, d, i, r);
r <<= 1;
int c = r.compare(d);
roundup = c < 0 ? 0 : c == 0 ? 1 : 2;
}
}
s = i.str(0, std::ios_base::fmtflags(0));
//
// Check if we got the right number of digits, this
// is really a test of whether we calculated the
// decimal exponent correctly:
//
std::intmax_t digits_got = i ? static_cast<std::intmax_t>(s.size()) : 0;
if (digits_got != digits_wanted)
{
base10_exp += digits_got - digits_wanted;
if (fixed)
digits_wanted = digits_got; // strange but true.
power10 = digits_wanted - base10_exp - 1;
shift = (std::intmax_t)cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count - exponent() - 1 - power10;
if (fixed)
break;
roundup = 0;
}
else
break;
} while (true);
//
// Check whether we need to round up: note that we could equally round up
// the integer /i/ above, but since we need to perform the rounding *after*
// the conversion to a string and the digit count check, we might as well
// do it here:
//
if ((roundup == 2) || ((roundup == 1) && ((s[s.size() - 1] - '0') & 1)))
{
boost::multiprecision::detail::round_string_up_at(s, static_cast<int>(s.size() - 1), base10_exp);
}
if (sign())
s.insert(static_cast<std::string::size_type>(0), 1, '-');
boost::multiprecision::detail::format_float_string(s, base10_exp, dig, f, false);
}
else
{
switch (exponent())
{
case exponent_zero:
s = sign() ? "-0" : f & std::ios_base::showpos ? "+0" : "0";
boost::multiprecision::detail::format_float_string(s, 0, dig, f, true);
break;
case exponent_nan:
s = "nan";
break;
case exponent_infinity:
s = sign() ? "-inf" : f & std::ios_base::showpos ? "+inf" : "inf";
break;
}
}
return s;
}
} // namespace backends
}} // namespace boost::multiprecision
#endif