boost/asio/basic_seq_packet_socket.hpp
//
// basic_seq_packet_socket.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2023 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_BASIC_SEQ_PACKET_SOCKET_HPP
#define BOOST_ASIO_BASIC_SEQ_PACKET_SOCKET_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/config.hpp>
#include <cstddef>
#include <boost/asio/basic_socket.hpp>
#include <boost/asio/detail/handler_type_requirements.hpp>
#include <boost/asio/detail/throw_error.hpp>
#include <boost/asio/error.hpp>
#include <boost/asio/detail/push_options.hpp>
namespace boost {
namespace asio {
#if !defined(BOOST_ASIO_BASIC_SEQ_PACKET_SOCKET_FWD_DECL)
#define BOOST_ASIO_BASIC_SEQ_PACKET_SOCKET_FWD_DECL
// Forward declaration with defaulted arguments.
template <typename Protocol, typename Executor = any_io_executor>
class basic_seq_packet_socket;
#endif // !defined(BOOST_ASIO_BASIC_SEQ_PACKET_SOCKET_FWD_DECL)
/// Provides sequenced packet socket functionality.
/**
* The basic_seq_packet_socket class template provides asynchronous and blocking
* sequenced packet socket functionality.
*
* @par Thread Safety
* @e Distinct @e objects: Safe.@n
* @e Shared @e objects: Unsafe.
*
* Synchronous @c send, @c receive, @c connect, and @c shutdown operations are
* thread safe with respect to each other, if the underlying operating system
* calls are also thread safe. This means that it is permitted to perform
* concurrent calls to these synchronous operations on a single socket object.
* Other synchronous operations, such as @c open or @c close, are not thread
* safe.
*/
template <typename Protocol, typename Executor>
class basic_seq_packet_socket
: public basic_socket<Protocol, Executor>
{
private:
class initiate_async_send;
class initiate_async_receive_with_flags;
public:
/// The type of the executor associated with the object.
typedef Executor executor_type;
/// Rebinds the socket type to another executor.
template <typename Executor1>
struct rebind_executor
{
/// The socket type when rebound to the specified executor.
typedef basic_seq_packet_socket<Protocol, Executor1> other;
};
/// The native representation of a socket.
#if defined(GENERATING_DOCUMENTATION)
typedef implementation_defined native_handle_type;
#else
typedef typename basic_socket<Protocol,
Executor>::native_handle_type native_handle_type;
#endif
/// The protocol type.
typedef Protocol protocol_type;
/// The endpoint type.
typedef typename Protocol::endpoint endpoint_type;
/// Construct a basic_seq_packet_socket without opening it.
/**
* This constructor creates a sequenced packet socket without opening it. The
* socket needs to be opened and then connected or accepted before data can
* be sent or received on it.
*
* @param ex The I/O executor that the socket will use, by default, to
* dispatch handlers for any asynchronous operations performed on the socket.
*/
explicit basic_seq_packet_socket(const executor_type& ex)
: basic_socket<Protocol, Executor>(ex)
{
}
/// Construct a basic_seq_packet_socket without opening it.
/**
* This constructor creates a sequenced packet socket without opening it. The
* socket needs to be opened and then connected or accepted before data can
* be sent or received on it.
*
* @param context An execution context which provides the I/O executor that
* the socket will use, by default, to dispatch handlers for any asynchronous
* operations performed on the socket.
*/
template <typename ExecutionContext>
explicit basic_seq_packet_socket(ExecutionContext& context,
typename constraint<
is_convertible<ExecutionContext&, execution_context&>::value
>::type = 0)
: basic_socket<Protocol, Executor>(context)
{
}
/// Construct and open a basic_seq_packet_socket.
/**
* This constructor creates and opens a sequenced_packet socket. The socket
* needs to be connected or accepted before data can be sent or received on
* it.
*
* @param ex The I/O executor that the socket will use, by default, to
* dispatch handlers for any asynchronous operations performed on the socket.
*
* @param protocol An object specifying protocol parameters to be used.
*
* @throws boost::system::system_error Thrown on failure.
*/
basic_seq_packet_socket(const executor_type& ex,
const protocol_type& protocol)
: basic_socket<Protocol, Executor>(ex, protocol)
{
}
/// Construct and open a basic_seq_packet_socket.
/**
* This constructor creates and opens a sequenced_packet socket. The socket
* needs to be connected or accepted before data can be sent or received on
* it.
*
* @param context An execution context which provides the I/O executor that
* the socket will use, by default, to dispatch handlers for any asynchronous
* operations performed on the socket.
*
* @param protocol An object specifying protocol parameters to be used.
*
* @throws boost::system::system_error Thrown on failure.
*/
template <typename ExecutionContext>
basic_seq_packet_socket(ExecutionContext& context,
const protocol_type& protocol,
typename constraint<
is_convertible<ExecutionContext&, execution_context&>::value,
defaulted_constraint
>::type = defaulted_constraint())
: basic_socket<Protocol, Executor>(context, protocol)
{
}
/// Construct a basic_seq_packet_socket, opening it and binding it to the
/// given local endpoint.
/**
* This constructor creates a sequenced packet socket and automatically opens
* it bound to the specified endpoint on the local machine. The protocol used
* is the protocol associated with the given endpoint.
*
* @param ex The I/O executor that the socket will use, by default, to
* dispatch handlers for any asynchronous operations performed on the socket.
*
* @param endpoint An endpoint on the local machine to which the sequenced
* packet socket will be bound.
*
* @throws boost::system::system_error Thrown on failure.
*/
basic_seq_packet_socket(const executor_type& ex,
const endpoint_type& endpoint)
: basic_socket<Protocol, Executor>(ex, endpoint)
{
}
/// Construct a basic_seq_packet_socket, opening it and binding it to the
/// given local endpoint.
/**
* This constructor creates a sequenced packet socket and automatically opens
* it bound to the specified endpoint on the local machine. The protocol used
* is the protocol associated with the given endpoint.
*
* @param context An execution context which provides the I/O executor that
* the socket will use, by default, to dispatch handlers for any asynchronous
* operations performed on the socket.
*
* @param endpoint An endpoint on the local machine to which the sequenced
* packet socket will be bound.
*
* @throws boost::system::system_error Thrown on failure.
*/
template <typename ExecutionContext>
basic_seq_packet_socket(ExecutionContext& context,
const endpoint_type& endpoint,
typename constraint<
is_convertible<ExecutionContext&, execution_context&>::value
>::type = 0)
: basic_socket<Protocol, Executor>(context, endpoint)
{
}
/// Construct a basic_seq_packet_socket on an existing native socket.
/**
* This constructor creates a sequenced packet socket object to hold an
* existing native socket.
*
* @param ex The I/O executor that the socket will use, by default, to
* dispatch handlers for any asynchronous operations performed on the socket.
*
* @param protocol An object specifying protocol parameters to be used.
*
* @param native_socket The new underlying socket implementation.
*
* @throws boost::system::system_error Thrown on failure.
*/
basic_seq_packet_socket(const executor_type& ex,
const protocol_type& protocol, const native_handle_type& native_socket)
: basic_socket<Protocol, Executor>(ex, protocol, native_socket)
{
}
/// Construct a basic_seq_packet_socket on an existing native socket.
/**
* This constructor creates a sequenced packet socket object to hold an
* existing native socket.
*
* @param context An execution context which provides the I/O executor that
* the socket will use, by default, to dispatch handlers for any asynchronous
* operations performed on the socket.
*
* @param protocol An object specifying protocol parameters to be used.
*
* @param native_socket The new underlying socket implementation.
*
* @throws boost::system::system_error Thrown on failure.
*/
template <typename ExecutionContext>
basic_seq_packet_socket(ExecutionContext& context,
const protocol_type& protocol, const native_handle_type& native_socket,
typename constraint<
is_convertible<ExecutionContext&, execution_context&>::value
>::type = 0)
: basic_socket<Protocol, Executor>(context, protocol, native_socket)
{
}
#if defined(BOOST_ASIO_HAS_MOVE) || defined(GENERATING_DOCUMENTATION)
/// Move-construct a basic_seq_packet_socket from another.
/**
* This constructor moves a sequenced packet socket from one object to
* another.
*
* @param other The other basic_seq_packet_socket object from which the move
* will occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_seq_packet_socket(const executor_type&)
* constructor.
*/
basic_seq_packet_socket(basic_seq_packet_socket&& other) BOOST_ASIO_NOEXCEPT
: basic_socket<Protocol, Executor>(std::move(other))
{
}
/// Move-assign a basic_seq_packet_socket from another.
/**
* This assignment operator moves a sequenced packet socket from one object to
* another.
*
* @param other The other basic_seq_packet_socket object from which the move
* will occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_seq_packet_socket(const executor_type&)
* constructor.
*/
basic_seq_packet_socket& operator=(basic_seq_packet_socket&& other)
{
basic_socket<Protocol, Executor>::operator=(std::move(other));
return *this;
}
/// Move-construct a basic_seq_packet_socket from a socket of another protocol
/// type.
/**
* This constructor moves a sequenced packet socket from one object to
* another.
*
* @param other The other basic_seq_packet_socket object from which the move
* will occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_seq_packet_socket(const executor_type&)
* constructor.
*/
template <typename Protocol1, typename Executor1>
basic_seq_packet_socket(basic_seq_packet_socket<Protocol1, Executor1>&& other,
typename constraint<
is_convertible<Protocol1, Protocol>::value
&& is_convertible<Executor1, Executor>::value
>::type = 0)
: basic_socket<Protocol, Executor>(std::move(other))
{
}
/// Move-assign a basic_seq_packet_socket from a socket of another protocol
/// type.
/**
* This assignment operator moves a sequenced packet socket from one object to
* another.
*
* @param other The other basic_seq_packet_socket object from which the move
* will occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_seq_packet_socket(const executor_type&)
* constructor.
*/
template <typename Protocol1, typename Executor1>
typename constraint<
is_convertible<Protocol1, Protocol>::value
&& is_convertible<Executor1, Executor>::value,
basic_seq_packet_socket&
>::type operator=(basic_seq_packet_socket<Protocol1, Executor1>&& other)
{
basic_socket<Protocol, Executor>::operator=(std::move(other));
return *this;
}
#endif // defined(BOOST_ASIO_HAS_MOVE) || defined(GENERATING_DOCUMENTATION)
/// Destroys the socket.
/**
* This function destroys the socket, cancelling any outstanding asynchronous
* operations associated with the socket as if by calling @c cancel.
*/
~basic_seq_packet_socket()
{
}
/// Send some data on the socket.
/**
* This function is used to send data on the sequenced packet socket. The
* function call will block until the data has been sent successfully, or an
* until error occurs.
*
* @param buffers One or more data buffers to be sent on the socket.
*
* @param flags Flags specifying how the send call is to be made.
*
* @returns The number of bytes sent.
*
* @throws boost::system::system_error Thrown on failure.
*
* @par Example
* To send a single data buffer use the @ref buffer function as follows:
* @code
* socket.send(boost::asio::buffer(data, size), 0);
* @endcode
* See the @ref buffer documentation for information on sending multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename ConstBufferSequence>
std::size_t send(const ConstBufferSequence& buffers,
socket_base::message_flags flags)
{
boost::system::error_code ec;
std::size_t s = this->impl_.get_service().send(
this->impl_.get_implementation(), buffers, flags, ec);
boost::asio::detail::throw_error(ec, "send");
return s;
}
/// Send some data on the socket.
/**
* This function is used to send data on the sequenced packet socket. The
* function call will block the data has been sent successfully, or an until
* error occurs.
*
* @param buffers One or more data buffers to be sent on the socket.
*
* @param flags Flags specifying how the send call is to be made.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes sent. Returns 0 if an error occurred.
*
* @note The send operation may not transmit all of the data to the peer.
* Consider using the @ref write function if you need to ensure that all data
* is written before the blocking operation completes.
*/
template <typename ConstBufferSequence>
std::size_t send(const ConstBufferSequence& buffers,
socket_base::message_flags flags, boost::system::error_code& ec)
{
return this->impl_.get_service().send(
this->impl_.get_implementation(), buffers, flags, ec);
}
/// Start an asynchronous send.
/**
* This function is used to asynchronously send data on the sequenced packet
* socket. It is an initiating function for an @ref asynchronous_operation,
* and always returns immediately.
*
* @param buffers One or more data buffers to be sent on the socket. Although
* the buffers object may be copied as necessary, ownership of the underlying
* memory blocks is retained by the caller, which must guarantee that they
* remain valid until the completion handler is called.
*
* @param flags Flags specifying how the send call is to be made.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the send completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* const boost::system::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes sent.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using boost::asio::post().
*
* @par Completion Signature
* @code void(boost::system::error_code, std::size_t) @endcode
*
* @par Example
* To send a single data buffer use the @ref buffer function as follows:
* @code
* socket.async_send(boost::asio::buffer(data, size), 0, handler);
* @endcode
* See the @ref buffer documentation for information on sending multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*
* @par Per-Operation Cancellation
* On POSIX or Windows operating systems, this asynchronous operation supports
* cancellation for the following boost::asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* @li @c cancellation_type::total
*/
template <typename ConstBufferSequence,
BOOST_ASIO_COMPLETION_TOKEN_FOR(void (boost::system::error_code,
std::size_t)) WriteToken
BOOST_ASIO_DEFAULT_COMPLETION_TOKEN_TYPE(executor_type)>
BOOST_ASIO_INITFN_AUTO_RESULT_TYPE_PREFIX(WriteToken,
void (boost::system::error_code, std::size_t))
async_send(const ConstBufferSequence& buffers,
socket_base::message_flags flags,
BOOST_ASIO_MOVE_ARG(WriteToken) token
BOOST_ASIO_DEFAULT_COMPLETION_TOKEN(executor_type))
BOOST_ASIO_INITFN_AUTO_RESULT_TYPE_SUFFIX((
async_initiate<WriteToken,
void (boost::system::error_code, std::size_t)>(
declval<initiate_async_send>(), token, buffers, flags)))
{
return async_initiate<WriteToken,
void (boost::system::error_code, std::size_t)>(
initiate_async_send(this), token, buffers, flags);
}
/// Receive some data on the socket.
/**
* This function is used to receive data on the sequenced packet socket. The
* function call will block until data has been received successfully, or
* until an error occurs.
*
* @param buffers One or more buffers into which the data will be received.
*
* @param out_flags After the receive call completes, contains flags
* associated with the received data. For example, if the
* socket_base::message_end_of_record bit is set then the received data marks
* the end of a record.
*
* @returns The number of bytes received.
*
* @throws boost::system::system_error Thrown on failure. An error code of
* boost::asio::error::eof indicates that the connection was closed by the
* peer.
*
* @par Example
* To receive into a single data buffer use the @ref buffer function as
* follows:
* @code
* socket.receive(boost::asio::buffer(data, size), out_flags);
* @endcode
* See the @ref buffer documentation for information on receiving into
* multiple buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename MutableBufferSequence>
std::size_t receive(const MutableBufferSequence& buffers,
socket_base::message_flags& out_flags)
{
boost::system::error_code ec;
std::size_t s = this->impl_.get_service().receive_with_flags(
this->impl_.get_implementation(), buffers, 0, out_flags, ec);
boost::asio::detail::throw_error(ec, "receive");
return s;
}
/// Receive some data on the socket.
/**
* This function is used to receive data on the sequenced packet socket. The
* function call will block until data has been received successfully, or
* until an error occurs.
*
* @param buffers One or more buffers into which the data will be received.
*
* @param in_flags Flags specifying how the receive call is to be made.
*
* @param out_flags After the receive call completes, contains flags
* associated with the received data. For example, if the
* socket_base::message_end_of_record bit is set then the received data marks
* the end of a record.
*
* @returns The number of bytes received.
*
* @throws boost::system::system_error Thrown on failure. An error code of
* boost::asio::error::eof indicates that the connection was closed by the
* peer.
*
* @note The receive operation may not receive all of the requested number of
* bytes. Consider using the @ref read function if you need to ensure that the
* requested amount of data is read before the blocking operation completes.
*
* @par Example
* To receive into a single data buffer use the @ref buffer function as
* follows:
* @code
* socket.receive(boost::asio::buffer(data, size), 0, out_flags);
* @endcode
* See the @ref buffer documentation for information on receiving into
* multiple buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename MutableBufferSequence>
std::size_t receive(const MutableBufferSequence& buffers,
socket_base::message_flags in_flags,
socket_base::message_flags& out_flags)
{
boost::system::error_code ec;
std::size_t s = this->impl_.get_service().receive_with_flags(
this->impl_.get_implementation(), buffers, in_flags, out_flags, ec);
boost::asio::detail::throw_error(ec, "receive");
return s;
}
/// Receive some data on a connected socket.
/**
* This function is used to receive data on the sequenced packet socket. The
* function call will block until data has been received successfully, or
* until an error occurs.
*
* @param buffers One or more buffers into which the data will be received.
*
* @param in_flags Flags specifying how the receive call is to be made.
*
* @param out_flags After the receive call completes, contains flags
* associated with the received data. For example, if the
* socket_base::message_end_of_record bit is set then the received data marks
* the end of a record.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes received. Returns 0 if an error occurred.
*
* @note The receive operation may not receive all of the requested number of
* bytes. Consider using the @ref read function if you need to ensure that the
* requested amount of data is read before the blocking operation completes.
*/
template <typename MutableBufferSequence>
std::size_t receive(const MutableBufferSequence& buffers,
socket_base::message_flags in_flags,
socket_base::message_flags& out_flags, boost::system::error_code& ec)
{
return this->impl_.get_service().receive_with_flags(
this->impl_.get_implementation(), buffers, in_flags, out_flags, ec);
}
/// Start an asynchronous receive.
/**
* This function is used to asynchronously receive data from the sequenced
* packet socket. It is an initiating function for an @ref
* asynchronous_operation, and always returns immediately.
*
* @param buffers One or more buffers into which the data will be received.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the completion handler is called.
*
* @param out_flags Once the asynchronous operation completes, contains flags
* associated with the received data. For example, if the
* socket_base::message_end_of_record bit is set then the received data marks
* the end of a record. The caller must guarantee that the referenced
* variable remains valid until the completion handler is called.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the receive completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* const boost::system::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes received.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using boost::asio::post().
*
* @par Completion Signature
* @code void(boost::system::error_code, std::size_t) @endcode
*
* @par Example
* To receive into a single data buffer use the @ref buffer function as
* follows:
* @code
* socket.async_receive(boost::asio::buffer(data, size), out_flags, handler);
* @endcode
* See the @ref buffer documentation for information on receiving into
* multiple buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*
* @par Per-Operation Cancellation
* On POSIX or Windows operating systems, this asynchronous operation supports
* cancellation for the following boost::asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* @li @c cancellation_type::total
*/
template <typename MutableBufferSequence,
BOOST_ASIO_COMPLETION_TOKEN_FOR(void (boost::system::error_code,
std::size_t)) ReadToken
BOOST_ASIO_DEFAULT_COMPLETION_TOKEN_TYPE(executor_type)>
BOOST_ASIO_INITFN_AUTO_RESULT_TYPE_PREFIX(ReadToken,
void (boost::system::error_code, std::size_t))
async_receive(const MutableBufferSequence& buffers,
socket_base::message_flags& out_flags,
BOOST_ASIO_MOVE_ARG(ReadToken) token
BOOST_ASIO_DEFAULT_COMPLETION_TOKEN(executor_type))
BOOST_ASIO_INITFN_AUTO_RESULT_TYPE_SUFFIX((
async_initiate<ReadToken,
void (boost::system::error_code, std::size_t)>(
declval<initiate_async_receive_with_flags>(), token,
buffers, socket_base::message_flags(0), &out_flags)))
{
return async_initiate<ReadToken,
void (boost::system::error_code, std::size_t)>(
initiate_async_receive_with_flags(this), token,
buffers, socket_base::message_flags(0), &out_flags);
}
/// Start an asynchronous receive.
/**
* This function is used to asynchronously receive data from the sequenced
* data socket. It is an initiating function for an @ref
* asynchronous_operation, and always returns immediately.
*
* @param buffers One or more buffers into which the data will be received.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the completion handler is called.
*
* @param in_flags Flags specifying how the receive call is to be made.
*
* @param out_flags Once the asynchronous operation completes, contains flags
* associated with the received data. For example, if the
* socket_base::message_end_of_record bit is set then the received data marks
* the end of a record. The caller must guarantee that the referenced
* variable remains valid until the completion handler is called.
*
* @param token The @ref completion_token that will be used to produce a
* completion handler, which will be called when the receive completes.
* Potential completion tokens include @ref use_future, @ref use_awaitable,
* @ref yield_context, or a function object with the correct completion
* signature. The function signature of the completion handler must be:
* @code void handler(
* const boost::system::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes received.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the completion handler will not be invoked from within this function.
* On immediate completion, invocation of the handler will be performed in a
* manner equivalent to using boost::asio::post().
*
* @par Completion Signature
* @code void(boost::system::error_code, std::size_t) @endcode
*
* @par Example
* To receive into a single data buffer use the @ref buffer function as
* follows:
* @code
* socket.async_receive(
* boost::asio::buffer(data, size),
* 0, out_flags, handler);
* @endcode
* See the @ref buffer documentation for information on receiving into
* multiple buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*
* @par Per-Operation Cancellation
* On POSIX or Windows operating systems, this asynchronous operation supports
* cancellation for the following boost::asio::cancellation_type values:
*
* @li @c cancellation_type::terminal
*
* @li @c cancellation_type::partial
*
* @li @c cancellation_type::total
*/
template <typename MutableBufferSequence,
BOOST_ASIO_COMPLETION_TOKEN_FOR(void (boost::system::error_code,
std::size_t)) ReadToken
BOOST_ASIO_DEFAULT_COMPLETION_TOKEN_TYPE(executor_type)>
BOOST_ASIO_INITFN_AUTO_RESULT_TYPE_PREFIX(ReadToken,
void (boost::system::error_code, std::size_t))
async_receive(const MutableBufferSequence& buffers,
socket_base::message_flags in_flags,
socket_base::message_flags& out_flags,
BOOST_ASIO_MOVE_ARG(ReadToken) token
BOOST_ASIO_DEFAULT_COMPLETION_TOKEN(executor_type))
BOOST_ASIO_INITFN_AUTO_RESULT_TYPE_SUFFIX((
async_initiate<ReadToken,
void (boost::system::error_code, std::size_t)>(
declval<initiate_async_receive_with_flags>(),
token, buffers, in_flags, &out_flags)))
{
return async_initiate<ReadToken,
void (boost::system::error_code, std::size_t)>(
initiate_async_receive_with_flags(this),
token, buffers, in_flags, &out_flags);
}
private:
// Disallow copying and assignment.
basic_seq_packet_socket(const basic_seq_packet_socket&) BOOST_ASIO_DELETED;
basic_seq_packet_socket& operator=(
const basic_seq_packet_socket&) BOOST_ASIO_DELETED;
class initiate_async_send
{
public:
typedef Executor executor_type;
explicit initiate_async_send(basic_seq_packet_socket* self)
: self_(self)
{
}
const executor_type& get_executor() const BOOST_ASIO_NOEXCEPT
{
return self_->get_executor();
}
template <typename WriteHandler, typename ConstBufferSequence>
void operator()(BOOST_ASIO_MOVE_ARG(WriteHandler) handler,
const ConstBufferSequence& buffers,
socket_base::message_flags flags) const
{
// If you get an error on the following line it means that your handler
// does not meet the documented type requirements for a WriteHandler.
BOOST_ASIO_WRITE_HANDLER_CHECK(WriteHandler, handler) type_check;
detail::non_const_lvalue<WriteHandler> handler2(handler);
self_->impl_.get_service().async_send(
self_->impl_.get_implementation(), buffers, flags,
handler2.value, self_->impl_.get_executor());
}
private:
basic_seq_packet_socket* self_;
};
class initiate_async_receive_with_flags
{
public:
typedef Executor executor_type;
explicit initiate_async_receive_with_flags(basic_seq_packet_socket* self)
: self_(self)
{
}
const executor_type& get_executor() const BOOST_ASIO_NOEXCEPT
{
return self_->get_executor();
}
template <typename ReadHandler, typename MutableBufferSequence>
void operator()(BOOST_ASIO_MOVE_ARG(ReadHandler) handler,
const MutableBufferSequence& buffers,
socket_base::message_flags in_flags,
socket_base::message_flags* out_flags) const
{
// If you get an error on the following line it means that your handler
// does not meet the documented type requirements for a ReadHandler.
BOOST_ASIO_READ_HANDLER_CHECK(ReadHandler, handler) type_check;
detail::non_const_lvalue<ReadHandler> handler2(handler);
self_->impl_.get_service().async_receive_with_flags(
self_->impl_.get_implementation(), buffers, in_flags,
*out_flags, handler2.value, self_->impl_.get_executor());
}
private:
basic_seq_packet_socket* self_;
};
};
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_BASIC_SEQ_PACKET_SOCKET_HPP