boost/graph/graph_concepts.hpp
//
//=======================================================================
// Copyright 1997, 1998, 1999, 2000 University of Notre Dame.
// Authors: Andrew Lumsdaine, Lie-Quan Lee, Jeremy G. Siek
//
// Copyright 2009, Andrew Sutton
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
//
#ifndef BOOST_GRAPH_CONCEPTS_HPP
#define BOOST_GRAPH_CONCEPTS_HPP
#include <boost/config.hpp>
#include <boost/property_map/property_map.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/properties.hpp>
#include <boost/graph/numeric_values.hpp>
#include <boost/graph/buffer_concepts.hpp>
#include <boost/concept_check.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/mpl/not.hpp>
#include <boost/static_assert.hpp>
#include <boost/detail/workaround.hpp>
#include <boost/concept/assert.hpp>
#include <boost/concept/detail/concept_def.hpp>
namespace boost
{
// dwa 2003/7/11 -- This clearly shouldn't be necessary, but if
// you want to use vector_as_graph, it is! I'm sure the graph
// library leaves these out all over the place. Probably a
// redesign involving specializing a template with a static
// member function is in order :(
//
// It is needed in order to allow us to write using boost::vertices as
// needed for ADL when using vector_as_graph below.
#if !defined(BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP) \
&& !BOOST_WORKAROUND(BOOST_BORLANDC, BOOST_TESTED_AT(0x564))
#define BOOST_VECTOR_AS_GRAPH_GRAPH_ADL_HACK
#endif
#ifdef BOOST_VECTOR_AS_GRAPH_GRAPH_ADL_HACK
template < class T >
typename T::ThereReallyIsNoMemberByThisNameInT vertices(T const&);
#endif
namespace concepts
{
BOOST_concept(MultiPassInputIterator, (T)) { BOOST_CONCEPT_USAGE(
MultiPassInputIterator) { BOOST_CONCEPT_ASSERT((InputIterator< T >));
}
};
BOOST_concept(Graph, (G))
{
typedef typename graph_traits< G >::vertex_descriptor vertex_descriptor;
typedef typename graph_traits< G >::edge_descriptor edge_descriptor;
typedef typename graph_traits< G >::directed_category directed_category;
typedef typename graph_traits< G >::edge_parallel_category
edge_parallel_category;
typedef typename graph_traits< G >::traversal_category traversal_category;
BOOST_CONCEPT_USAGE(Graph)
{
BOOST_CONCEPT_ASSERT((DefaultConstructible< vertex_descriptor >));
BOOST_CONCEPT_ASSERT((EqualityComparable< vertex_descriptor >));
BOOST_CONCEPT_ASSERT((Assignable< vertex_descriptor >));
}
G g;
};
BOOST_concept(IncidenceGraph, (G)) : Graph< G >
{
typedef typename graph_traits< G >::edge_descriptor edge_descriptor;
typedef typename graph_traits< G >::out_edge_iterator out_edge_iterator;
typedef typename graph_traits< G >::degree_size_type degree_size_type;
typedef typename graph_traits< G >::traversal_category traversal_category;
BOOST_STATIC_ASSERT(
(boost::mpl::not_< boost::is_same< out_edge_iterator, void > >::value));
BOOST_STATIC_ASSERT(
(boost::mpl::not_< boost::is_same< degree_size_type, void > >::value));
BOOST_CONCEPT_USAGE(IncidenceGraph)
{
BOOST_CONCEPT_ASSERT((MultiPassInputIterator< out_edge_iterator >));
BOOST_CONCEPT_ASSERT((DefaultConstructible< edge_descriptor >));
BOOST_CONCEPT_ASSERT((EqualityComparable< edge_descriptor >));
BOOST_CONCEPT_ASSERT((Assignable< edge_descriptor >));
BOOST_CONCEPT_ASSERT(
(Convertible< traversal_category, incidence_graph_tag >));
p = out_edges(u, g);
n = out_degree(u, g);
e = *p.first;
u = source(e, g);
v = target(e, g);
const_constraints(g);
}
void const_constraints(const G& cg)
{
p = out_edges(u, cg);
n = out_degree(u, cg);
e = *p.first;
u = source(e, cg);
v = target(e, cg);
}
std::pair< out_edge_iterator, out_edge_iterator > p;
typename graph_traits< G >::vertex_descriptor u, v;
typename graph_traits< G >::edge_descriptor e;
typename graph_traits< G >::degree_size_type n;
G g;
};
BOOST_concept(BidirectionalGraph, (G)) : IncidenceGraph< G >
{
typedef typename graph_traits< G >::in_edge_iterator in_edge_iterator;
typedef typename graph_traits< G >::traversal_category traversal_category;
BOOST_CONCEPT_USAGE(BidirectionalGraph)
{
BOOST_CONCEPT_ASSERT((MultiPassInputIterator< in_edge_iterator >));
BOOST_CONCEPT_ASSERT(
(Convertible< traversal_category, bidirectional_graph_tag >));
BOOST_STATIC_ASSERT((boost::mpl::not_<
boost::is_same< in_edge_iterator, void > >::value));
p = in_edges(v, g);
n = in_degree(v, g);
n = degree(v, g);
e = *p.first;
const_constraints(g);
}
void const_constraints(const G& cg)
{
p = in_edges(v, cg);
n = in_degree(v, cg);
n = degree(v, cg);
e = *p.first;
}
std::pair< in_edge_iterator, in_edge_iterator > p;
typename graph_traits< G >::vertex_descriptor v;
typename graph_traits< G >::edge_descriptor e;
typename graph_traits< G >::degree_size_type n;
G g;
};
BOOST_concept(AdjacencyGraph, (G)) : Graph< G >
{
typedef typename graph_traits< G >::adjacency_iterator adjacency_iterator;
typedef typename graph_traits< G >::traversal_category traversal_category;
BOOST_CONCEPT_USAGE(AdjacencyGraph)
{
BOOST_CONCEPT_ASSERT((MultiPassInputIterator< adjacency_iterator >));
BOOST_CONCEPT_ASSERT(
(Convertible< traversal_category, adjacency_graph_tag >));
BOOST_STATIC_ASSERT((boost::mpl::not_<
boost::is_same< adjacency_iterator, void > >::value));
p = adjacent_vertices(v, g);
v = *p.first;
const_constraints(g);
}
void const_constraints(const G& cg) { p = adjacent_vertices(v, cg); }
std::pair< adjacency_iterator, adjacency_iterator > p;
typename graph_traits< G >::vertex_descriptor v;
G g;
};
BOOST_concept(VertexListGraph, (G)) : Graph< G >
{
typedef typename graph_traits< G >::vertex_iterator vertex_iterator;
typedef typename graph_traits< G >::vertices_size_type vertices_size_type;
typedef typename graph_traits< G >::traversal_category traversal_category;
BOOST_CONCEPT_USAGE(VertexListGraph)
{
BOOST_CONCEPT_ASSERT((MultiPassInputIterator< vertex_iterator >));
BOOST_CONCEPT_ASSERT(
(Convertible< traversal_category, vertex_list_graph_tag >));
BOOST_STATIC_ASSERT((boost::mpl::not_<
boost::is_same< vertex_iterator, void > >::value));
BOOST_STATIC_ASSERT((boost::mpl::not_<
boost::is_same< vertices_size_type, void > >::value));
#ifdef BOOST_VECTOR_AS_GRAPH_GRAPH_ADL_HACK
// dwa 2003/7/11 -- This clearly shouldn't be necessary, but if
// you want to use vector_as_graph, it is! I'm sure the graph
// library leaves these out all over the place. Probably a
// redesign involving specializing a template with a static
// member function is in order :(
using boost::vertices;
#endif
p = vertices(g);
v = *p.first;
const_constraints(g);
}
void const_constraints(const G& cg)
{
#ifdef BOOST_VECTOR_AS_GRAPH_GRAPH_ADL_HACK
// dwa 2003/7/11 -- This clearly shouldn't be necessary, but if
// you want to use vector_as_graph, it is! I'm sure the graph
// library leaves these out all over the place. Probably a
// redesign involving specializing a template with a static
// member function is in order :(
using boost::vertices;
#endif
p = vertices(cg);
v = *p.first;
V = num_vertices(cg);
}
std::pair< vertex_iterator, vertex_iterator > p;
typename graph_traits< G >::vertex_descriptor v;
G g;
vertices_size_type V;
};
BOOST_concept(EdgeListGraph, (G)) : Graph< G >
{
typedef typename graph_traits< G >::edge_descriptor edge_descriptor;
typedef typename graph_traits< G >::edge_iterator edge_iterator;
typedef typename graph_traits< G >::edges_size_type edges_size_type;
typedef typename graph_traits< G >::traversal_category traversal_category;
BOOST_CONCEPT_USAGE(EdgeListGraph)
{
BOOST_CONCEPT_ASSERT((MultiPassInputIterator< edge_iterator >));
BOOST_CONCEPT_ASSERT((DefaultConstructible< edge_descriptor >));
BOOST_CONCEPT_ASSERT((EqualityComparable< edge_descriptor >));
BOOST_CONCEPT_ASSERT((Assignable< edge_descriptor >));
BOOST_CONCEPT_ASSERT(
(Convertible< traversal_category, edge_list_graph_tag >));
BOOST_STATIC_ASSERT(
(boost::mpl::not_< boost::is_same< edge_iterator, void > >::value));
BOOST_STATIC_ASSERT((boost::mpl::not_<
boost::is_same< edges_size_type, void > >::value));
p = edges(g);
e = *p.first;
u = source(e, g);
v = target(e, g);
const_constraints(g);
}
void const_constraints(const G& cg)
{
p = edges(cg);
E = num_edges(cg);
e = *p.first;
u = source(e, cg);
v = target(e, cg);
}
std::pair< edge_iterator, edge_iterator > p;
typename graph_traits< G >::vertex_descriptor u, v;
typename graph_traits< G >::edge_descriptor e;
edges_size_type E;
G g;
};
BOOST_concept(VertexAndEdgeListGraph, (G))
: VertexListGraph< G >, EdgeListGraph< G > {};
// Where to put the requirement for this constructor?
// G g(n_vertices);
// Not in mutable graph, then LEDA graph's can't be models of
// MutableGraph.
BOOST_concept(EdgeMutableGraph, (G))
{
typedef typename graph_traits< G >::edge_descriptor edge_descriptor;
BOOST_CONCEPT_USAGE(EdgeMutableGraph)
{
p = add_edge(u, v, g);
remove_edge(u, v, g);
remove_edge(e, g);
clear_vertex(v, g);
}
G g;
edge_descriptor e;
std::pair< edge_descriptor, bool > p;
typename graph_traits< G >::vertex_descriptor u, v;
};
BOOST_concept(VertexMutableGraph, (G))
{
BOOST_CONCEPT_USAGE(VertexMutableGraph)
{
v = add_vertex(g);
remove_vertex(v, g);
}
G g;
typename graph_traits< G >::vertex_descriptor u, v;
};
BOOST_concept(MutableGraph, (G))
: EdgeMutableGraph< G >, VertexMutableGraph< G > {};
template < class edge_descriptor > struct dummy_edge_predicate
{
bool operator()(const edge_descriptor&) const { return false; }
};
BOOST_concept(MutableIncidenceGraph, (G)) : MutableGraph< G >
{
BOOST_CONCEPT_USAGE(MutableIncidenceGraph)
{
remove_edge(iter, g);
remove_out_edge_if(u, p, g);
}
G g;
typedef typename graph_traits< G >::edge_descriptor edge_descriptor;
dummy_edge_predicate< edge_descriptor > p;
typename boost::graph_traits< G >::vertex_descriptor u;
typename boost::graph_traits< G >::out_edge_iterator iter;
};
BOOST_concept(MutableBidirectionalGraph, (G)) : MutableIncidenceGraph< G >
{
BOOST_CONCEPT_USAGE(MutableBidirectionalGraph)
{
remove_in_edge_if(u, p, g);
}
G g;
typedef typename graph_traits< G >::edge_descriptor edge_descriptor;
dummy_edge_predicate< edge_descriptor > p;
typename boost::graph_traits< G >::vertex_descriptor u;
};
BOOST_concept(MutableEdgeListGraph, (G)) : EdgeMutableGraph< G >
{
BOOST_CONCEPT_USAGE(MutableEdgeListGraph) { remove_edge_if(p, g); }
G g;
typedef typename graph_traits< G >::edge_descriptor edge_descriptor;
dummy_edge_predicate< edge_descriptor > p;
};
BOOST_concept(VertexMutablePropertyGraph, (G)) : VertexMutableGraph< G >
{
BOOST_CONCEPT_USAGE(VertexMutablePropertyGraph) { v = add_vertex(vp, g); }
G g;
typename graph_traits< G >::vertex_descriptor v;
typename vertex_property_type< G >::type vp;
};
BOOST_concept(EdgeMutablePropertyGraph, (G)) : EdgeMutableGraph< G >
{
typedef typename graph_traits< G >::edge_descriptor edge_descriptor;
BOOST_CONCEPT_USAGE(EdgeMutablePropertyGraph) { p = add_edge(u, v, ep, g); }
G g;
std::pair< edge_descriptor, bool > p;
typename graph_traits< G >::vertex_descriptor u, v;
typename edge_property_type< G >::type ep;
};
BOOST_concept(AdjacencyMatrix, (G)) : Graph< G >
{
typedef typename graph_traits< G >::edge_descriptor edge_descriptor;
BOOST_CONCEPT_USAGE(AdjacencyMatrix)
{
p = edge(u, v, g);
const_constraints(g);
}
void const_constraints(const G& cg) { p = edge(u, v, cg); }
typename graph_traits< G >::vertex_descriptor u, v;
std::pair< edge_descriptor, bool > p;
G g;
};
BOOST_concept(ReadablePropertyGraph, (G)(X)(Property)) : Graph< G >
{
typedef typename property_map< G, Property >::const_type const_Map;
BOOST_CONCEPT_USAGE(ReadablePropertyGraph)
{
BOOST_CONCEPT_ASSERT((ReadablePropertyMapConcept< const_Map, X >));
const_constraints(g);
}
void const_constraints(const G& cg)
{
const_Map pmap = get(Property(), cg);
pval = get(Property(), cg, x);
ignore_unused_variable_warning(pmap);
}
G g;
X x;
typename property_traits< const_Map >::value_type pval;
};
BOOST_concept(PropertyGraph, (G)(X)(Property))
: ReadablePropertyGraph< G, X, Property >
{
typedef typename property_map< G, Property >::type Map;
BOOST_CONCEPT_USAGE(PropertyGraph)
{
BOOST_CONCEPT_ASSERT((ReadWritePropertyMapConcept< Map, X >));
Map pmap = get(Property(), g);
pval = get(Property(), g, x);
put(Property(), g, x, pval);
ignore_unused_variable_warning(pmap);
}
G g;
X x;
typename property_traits< Map >::value_type pval;
};
BOOST_concept(LvaluePropertyGraph, (G)(X)(Property))
: ReadablePropertyGraph< G, X, Property >
{
typedef typename property_map< G, Property >::type Map;
typedef typename property_map< G, Property >::const_type const_Map;
BOOST_CONCEPT_USAGE(LvaluePropertyGraph)
{
BOOST_CONCEPT_ASSERT((LvaluePropertyMapConcept< const_Map, X >));
pval = get(Property(), g, x);
put(Property(), g, x, pval);
}
G g;
X x;
typename property_traits< Map >::value_type pval;
};
// The *IndexGraph concepts are "semantic" graph concpepts. These can be
// applied to describe any graph that has an index map that can be accessed
// using the get(*_index, g) method. For example, adjacency lists with
// VertexSet == vecS are implicitly models of this concept.
//
// NOTE: We could require an associated type vertex_index_type, but that
// would mean propagating that type name into graph_traits and all of the
// other graph implementations. Much easier to simply call it unsigned.
BOOST_concept(VertexIndexGraph, (Graph))
{
BOOST_CONCEPT_USAGE(VertexIndexGraph)
{
typedef typename graph_traits< Graph >::vertex_descriptor Vertex;
typedef typename property_map< Graph, vertex_index_t >::type Map;
typedef unsigned Index; // This could be Graph::vertex_index_type
Map m = get(vertex_index, g);
Index x = get(vertex_index, g, Vertex());
ignore_unused_variable_warning(m);
ignore_unused_variable_warning(x);
// This is relaxed
renumber_vertex_indices(g);
const_constraints(g);
}
void const_constraints(const Graph& g_)
{
typedef typename property_map< Graph, vertex_index_t >::const_type Map;
Map m = get(vertex_index, g_);
ignore_unused_variable_warning(m);
}
private:
Graph g;
};
BOOST_concept(EdgeIndexGraph, (Graph))
{
BOOST_CONCEPT_USAGE(EdgeIndexGraph)
{
typedef typename graph_traits< Graph >::edge_descriptor Edge;
typedef typename property_map< Graph, edge_index_t >::type Map;
typedef unsigned Index; // This could be Graph::vertex_index_type
Map m = get(edge_index, g);
Index x = get(edge_index, g, Edge());
ignore_unused_variable_warning(m);
ignore_unused_variable_warning(x);
// This is relaxed
renumber_edge_indices(g);
const_constraints(g);
}
void const_constraints(const Graph& g_)
{
typedef typename property_map< Graph, edge_index_t >::const_type Map;
Map m = get(edge_index, g_);
ignore_unused_variable_warning(m);
}
private:
Graph g;
};
BOOST_concept(ColorValue, (C))
: EqualityComparable< C >, DefaultConstructible< C >
{
BOOST_CONCEPT_USAGE(ColorValue)
{
c = color_traits< C >::white();
c = color_traits< C >::gray();
c = color_traits< C >::black();
}
C c;
};
BOOST_concept(BasicMatrix, (M)(I)(V))
{
BOOST_CONCEPT_USAGE(BasicMatrix)
{
V& elt = A[i][j];
const_constraints(A);
ignore_unused_variable_warning(elt);
}
void const_constraints(const M& cA)
{
const V& elt = cA[i][j];
ignore_unused_variable_warning(elt);
}
M A;
I i, j;
};
// The following concepts describe aspects of numberic values and measure
// functions. We're extending the notion of numeric values to include
// emulation for zero and infinity.
BOOST_concept(NumericValue, (Numeric)) { BOOST_CONCEPT_USAGE(NumericValue) {
BOOST_CONCEPT_ASSERT((DefaultConstructible< Numeric >));
BOOST_CONCEPT_ASSERT((CopyConstructible< Numeric >));
numeric_values< Numeric >::zero();
numeric_values< Numeric >::infinity();
}
}
;
BOOST_concept(DegreeMeasure, (Measure)(Graph))
{
BOOST_CONCEPT_USAGE(DegreeMeasure)
{
typedef typename Measure::degree_type Degree;
typedef typename Measure::vertex_type Vertex;
Degree d = m(Vertex(), g);
ignore_unused_variable_warning(d);
}
private:
Measure m;
Graph g;
};
BOOST_concept(DistanceMeasure, (Measure)(Graph))
{
BOOST_CONCEPT_USAGE(DistanceMeasure)
{
typedef typename Measure::distance_type Distance;
typedef typename Measure::result_type Result;
Result r = m(Distance(), g);
ignore_unused_variable_warning(r);
}
private:
Measure m;
Graph g;
};
} /* namespace concepts */
using boost::concepts::MultiPassInputIteratorConcept;
// Graph concepts
using boost::concepts::AdjacencyGraphConcept;
using boost::concepts::AdjacencyMatrixConcept;
using boost::concepts::BidirectionalGraphConcept;
using boost::concepts::EdgeIndexGraphConcept;
using boost::concepts::EdgeListGraphConcept;
using boost::concepts::EdgeMutableGraphConcept;
using boost::concepts::EdgeMutablePropertyGraphConcept;
using boost::concepts::GraphConcept;
using boost::concepts::IncidenceGraphConcept;
using boost::concepts::LvaluePropertyGraphConcept;
using boost::concepts::MutableBidirectionalGraphConcept;
using boost::concepts::MutableEdgeListGraphConcept;
using boost::concepts::MutableGraphConcept;
using boost::concepts::MutableIncidenceGraphConcept;
using boost::concepts::PropertyGraphConcept;
using boost::concepts::ReadablePropertyGraphConcept;
using boost::concepts::VertexAndEdgeListGraphConcept;
using boost::concepts::VertexIndexGraphConcept;
using boost::concepts::VertexListGraphConcept;
using boost::concepts::VertexMutableGraphConcept;
using boost::concepts::VertexMutablePropertyGraphConcept;
// Utility concepts
using boost::concepts::BasicMatrixConcept;
using boost::concepts::ColorValueConcept;
using boost::concepts::DegreeMeasureConcept;
using boost::concepts::DistanceMeasureConcept;
using boost::concepts::NumericValueConcept;
} /* namespace boost */
#include <boost/concept/detail/concept_undef.hpp>
#endif /* BOOST_GRAPH_CONCEPTS_H */