boost/graph/subgraph.hpp
//=======================================================================
// Copyright 2001 University of Notre Dame.
// Authors: Jeremy G. Siek and Lie-Quan Lee
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
#ifndef BOOST_SUBGRAPH_HPP
#define BOOST_SUBGRAPH_HPP
// UNDER CONSTRUCTION
#include <boost/config.hpp>
#include <list>
#include <vector>
#include <map>
#include <boost/assert.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/graph_mutability_traits.hpp>
#include <boost/graph/properties.hpp>
#include <boost/iterator/indirect_iterator.hpp>
#include <boost/static_assert.hpp>
#include <boost/assert.hpp>
#include <boost/type_traits.hpp>
#include <boost/mpl/if.hpp>
#include <boost/mpl/or.hpp>
namespace boost
{
struct subgraph_tag
{
};
/** @name Property Lookup
* The local_property and global_property functions are used to create
* structures that determine the lookup strategy for properties in subgraphs.
* Note that the nested kind member is used to help interoperate with actual
* Property types.
*/
//@{
template < typename T > struct local_property
{
typedef T kind;
local_property(T x) : value(x) {}
T value;
};
template < typename T > inline local_property< T > local(T x)
{
return local_property< T >(x);
}
template < typename T > struct global_property
{
typedef T kind;
global_property(T x) : value(x) {}
T value;
};
template < typename T > inline global_property< T > global(T x)
{
return global_property< T >(x);
}
//@}
// Invariants of an induced subgraph:
// - If vertex u is in subgraph g, then u must be in g.parent().
// - If edge e is in subgraph g, then e must be in g.parent().
// - If edge e=(u,v) is in the root graph, then edge e
// is also in any subgraph that contains both vertex u and v.
// The Graph template parameter must have a vertex_index and edge_index
// internal property. It is assumed that the vertex indices are assigned
// automatically by the graph during a call to add_vertex(). It is not
// assumed that the edge vertices are assigned automatically, they are
// explicitly assigned here.
template < typename Graph > class subgraph
{
typedef graph_traits< Graph > Traits;
typedef std::list< subgraph< Graph >* > ChildrenList;
public:
// Graph requirements
typedef typename Traits::vertex_descriptor vertex_descriptor;
typedef typename Traits::edge_descriptor edge_descriptor;
typedef typename Traits::directed_category directed_category;
typedef typename Traits::edge_parallel_category edge_parallel_category;
typedef typename Traits::traversal_category traversal_category;
// IncidenceGraph requirements
typedef typename Traits::out_edge_iterator out_edge_iterator;
typedef typename Traits::degree_size_type degree_size_type;
// AdjacencyGraph requirements
typedef typename Traits::adjacency_iterator adjacency_iterator;
// VertexListGraph requirements
typedef typename Traits::vertex_iterator vertex_iterator;
typedef typename Traits::vertices_size_type vertices_size_type;
// EdgeListGraph requirements
typedef typename Traits::edge_iterator edge_iterator;
typedef typename Traits::edges_size_type edges_size_type;
typedef typename Traits::in_edge_iterator in_edge_iterator;
typedef typename edge_property_type< Graph >::type edge_property_type;
typedef typename vertex_property_type< Graph >::type vertex_property_type;
typedef subgraph_tag graph_tag;
typedef Graph graph_type;
typedef typename graph_property_type< Graph >::type graph_property_type;
// Create the main graph, the root of the subgraph tree
subgraph() : m_parent(0), m_edge_counter(0) {}
subgraph(const graph_property_type& p)
: m_graph(p), m_parent(0), m_edge_counter(0)
{
}
subgraph(vertices_size_type n,
const graph_property_type& p = graph_property_type())
: m_graph(n, p), m_parent(0), m_edge_counter(0), m_global_vertex(n)
{
typename Graph::vertex_iterator v, v_end;
vertices_size_type i = 0;
for (boost::tie(v, v_end) = vertices(m_graph); v != v_end; ++v)
m_global_vertex[i++] = *v;
}
// copy constructor
subgraph(const subgraph& x) : m_parent(x.m_parent), m_edge_counter(0)
{
if (x.is_root())
{
m_graph = x.m_graph;
m_edge_counter = x.m_edge_counter;
m_global_vertex = x.m_global_vertex;
m_global_edge = x.m_global_edge;
}
else
{
get_property(*this) = get_property(x);
typename subgraph< Graph >::vertex_iterator vi, vi_end;
boost::tie(vi, vi_end) = vertices(x);
for (; vi != vi_end; ++vi)
{
add_vertex(x.local_to_global(*vi), *this);
}
}
// Do a deep copy (recursive).
// Only the root graph is copied, the subgraphs contain
// only references to the global vertices they own.
typename subgraph< Graph >::children_iterator i, i_end;
boost::tie(i, i_end) = x.children();
for (; i != i_end; ++i)
{
m_children.push_back(new subgraph< Graph >(*i));
m_children.back()->m_parent = this;
}
}
~subgraph()
{
for (typename ChildrenList::iterator i = m_children.begin();
i != m_children.end(); ++i)
{
delete *i;
}
}
// Return a null vertex descriptor for the graph.
static vertex_descriptor null_vertex() { return Traits::null_vertex(); }
// Create a subgraph
subgraph< Graph >& create_subgraph()
{
m_children.push_back(new subgraph< Graph >());
m_children.back()->m_parent = this;
return *m_children.back();
}
// Create a subgraph with the specified vertex set.
template < typename VertexIterator >
subgraph< Graph >& create_subgraph(
VertexIterator first, VertexIterator last)
{
m_children.push_back(new subgraph< Graph >());
m_children.back()->m_parent = this;
for (; first != last; ++first)
{
add_vertex(*first, *m_children.back());
}
return *m_children.back();
}
// local <-> global descriptor conversion functions
vertex_descriptor local_to_global(vertex_descriptor u_local) const
{
return is_root() ? u_local : m_global_vertex[u_local];
}
vertex_descriptor global_to_local(vertex_descriptor u_global) const
{
vertex_descriptor u_local;
bool in_subgraph;
if (is_root())
return u_global;
boost::tie(u_local, in_subgraph) = this->find_vertex(u_global);
BOOST_ASSERT(in_subgraph == true);
return u_local;
}
edge_descriptor local_to_global(edge_descriptor e_local) const
{
return is_root()
? e_local
: m_global_edge[get(get(edge_index, m_graph), e_local)];
}
edge_descriptor global_to_local(edge_descriptor e_global) const
{
return is_root() ? e_global
: (*m_local_edge.find(
get(get(edge_index, root().m_graph), e_global)))
.second;
}
// Is vertex u (of the root graph) contained in this subgraph?
// If so, return the matching local vertex.
std::pair< vertex_descriptor, bool > find_vertex(
vertex_descriptor u_global) const
{
if (is_root())
return std::make_pair(u_global, true);
typename LocalVertexMap::const_iterator i
= m_local_vertex.find(u_global);
bool valid = i != m_local_vertex.end();
return std::make_pair((valid ? (*i).second : null_vertex()), valid);
}
// Is edge e (of the root graph) contained in this subgraph?
// If so, return the matching local edge.
std::pair< edge_descriptor, bool > find_edge(edge_descriptor e_global) const
{
if (is_root())
return std::make_pair(e_global, true);
typename LocalEdgeMap::const_iterator i
= m_local_edge.find(get(get(edge_index, root().m_graph), e_global));
bool valid = i != m_local_edge.end();
return std::make_pair((valid ? (*i).second : edge_descriptor()), valid);
}
// Return the parent graph.
subgraph& parent() { return *m_parent; }
const subgraph& parent() const { return *m_parent; }
// Return true if this is the root subgraph
bool is_root() const { return m_parent == 0; }
// Return the root graph of the subgraph tree.
subgraph& root() { return is_root() ? *this : m_parent->root(); }
const subgraph& root() const
{
return is_root() ? *this : m_parent->root();
}
// Return the children subgraphs of this graph/subgraph.
// Use a list of pointers because the VC++ std::list doesn't like
// storing incomplete type.
typedef indirect_iterator< typename ChildrenList::const_iterator,
subgraph< Graph >, std::bidirectional_iterator_tag >
children_iterator;
typedef indirect_iterator< typename ChildrenList::const_iterator,
subgraph< Graph > const, std::bidirectional_iterator_tag >
const_children_iterator;
std::pair< const_children_iterator, const_children_iterator >
children() const
{
return std::make_pair(const_children_iterator(m_children.begin()),
const_children_iterator(m_children.end()));
}
std::pair< children_iterator, children_iterator > children()
{
return std::make_pair(children_iterator(m_children.begin()),
children_iterator(m_children.end()));
}
std::size_t num_children() const { return m_children.size(); }
#ifndef BOOST_GRAPH_NO_BUNDLED_PROPERTIES
// Defualt property access delegates the lookup to global properties.
template < typename Descriptor >
typename graph::detail::bundled_result< Graph, Descriptor >::type&
operator[](Descriptor x)
{
return is_root() ? m_graph[x] : root().m_graph[local_to_global(x)];
}
template < typename Descriptor >
typename graph::detail::bundled_result< Graph, Descriptor >::type const&
operator[](Descriptor x) const
{
return is_root() ? m_graph[x] : root().m_graph[local_to_global(x)];
}
// Local property access returns the local property of the given descripor.
template < typename Descriptor >
typename graph::detail::bundled_result< Graph, Descriptor >::type&
operator[](local_property< Descriptor > x)
{
return m_graph[x.value];
}
template < typename Descriptor >
typename graph::detail::bundled_result< Graph, Descriptor >::type const&
operator[](local_property< Descriptor > x) const
{
return m_graph[x.value];
}
// Global property access returns the global property associated with the
// given descriptor. This is an alias for the default bundled property
// access operations.
template < typename Descriptor >
typename graph::detail::bundled_result< Graph, Descriptor >::type&
operator[](global_property< Descriptor > x)
{
return (*this)[x.value];
}
template < typename Descriptor >
typename graph::detail::bundled_result< Graph, Descriptor >::type const&
operator[](global_property< Descriptor > x) const
{
return (*this)[x.value];
}
#endif // BOOST_GRAPH_NO_BUNDLED_PROPERTIES
// private:
typedef typename property_map< Graph, edge_index_t >::type EdgeIndexMap;
typedef
typename property_traits< EdgeIndexMap >::value_type edge_index_type;
BOOST_STATIC_ASSERT((!is_same< edge_index_type,
boost::detail::error_property_not_found >::value));
private:
typedef std::vector< vertex_descriptor > GlobalVertexList;
typedef std::vector< edge_descriptor > GlobalEdgeList;
typedef std::map< vertex_descriptor, vertex_descriptor > LocalVertexMap;
typedef std::map< edge_index_type, edge_descriptor > LocalEdgeMap;
// TODO: Should the LocalVertexMap be: map<index_type, descriptor>?
// TODO: Can we relax the indexing requirement if both descriptors are
// LessThanComparable?
// TODO: Should we really be using unorderd_map for improved lookup times?
public: // Probably shouldn't be public....
Graph m_graph;
subgraph< Graph >* m_parent;
edge_index_type m_edge_counter; // for generating unique edge indices
ChildrenList m_children;
GlobalVertexList m_global_vertex; // local -> global
LocalVertexMap m_local_vertex; // global -> local
GlobalEdgeList m_global_edge; // local -> global
LocalEdgeMap m_local_edge; // global -> local
edge_descriptor local_add_edge(vertex_descriptor u_local,
vertex_descriptor v_local, edge_descriptor e_global)
{
edge_descriptor e_local;
bool inserted;
boost::tie(e_local, inserted) = add_edge(u_local, v_local, m_graph);
put(edge_index, m_graph, e_local, m_edge_counter++);
m_global_edge.push_back(e_global);
m_local_edge[get(get(edge_index, this->root()), e_global)] = e_local;
return e_local;
}
};
template < typename Graph >
struct vertex_bundle_type< subgraph< Graph > > : vertex_bundle_type< Graph >
{
};
template < typename Graph >
struct edge_bundle_type< subgraph< Graph > > : edge_bundle_type< Graph >
{
};
template < typename Graph >
struct graph_bundle_type< subgraph< Graph > > : graph_bundle_type< Graph >
{
};
//===========================================================================
// Functions special to the Subgraph Class
template < typename G >
typename subgraph< G >::vertex_descriptor add_vertex(
typename subgraph< G >::vertex_descriptor u_global, subgraph< G >& g)
{
BOOST_ASSERT(!g.is_root());
typename subgraph< G >::vertex_descriptor u_local;
bool exists_local;
boost::tie(u_local, exists_local) = g.find_vertex(u_global);
if (!exists_local)
{
typename subgraph< G >::vertex_descriptor v_global;
typename subgraph< G >::edge_descriptor e_global;
// call recursion for parent subgraph
if (!g.parent().is_root())
add_vertex(u_global, g.parent());
u_local = add_vertex(g.m_graph);
g.m_global_vertex.push_back(u_global);
g.m_local_vertex[u_global] = u_local;
subgraph< G >& r = g.root();
// remember edge global and local maps
{
typename subgraph< G >::out_edge_iterator ei, ei_end;
for (boost::tie(ei, ei_end) = out_edges(u_global, r); ei != ei_end;
++ei)
{
e_global = *ei;
v_global = target(e_global, r);
if (g.find_vertex(v_global).second == true)
g.local_add_edge(
u_local, g.global_to_local(v_global), e_global);
}
}
if (is_directed(g))
{ // not necessary for undirected graph
typename subgraph< G >::vertex_iterator vi, vi_end;
typename subgraph< G >::out_edge_iterator ei, ei_end;
for (boost::tie(vi, vi_end) = vertices(r); vi != vi_end; ++vi)
{
v_global = *vi;
if (v_global == u_global)
continue; // don't insert self loops twice!
if (!g.find_vertex(v_global).second)
continue; // not a subgraph vertex => try next one
for (boost::tie(ei, ei_end) = out_edges(*vi, r); ei != ei_end;
++ei)
{
e_global = *ei;
if (target(e_global, r) == u_global)
{
g.local_add_edge(
g.global_to_local(v_global), u_local, e_global);
}
}
}
}
}
return u_local;
}
// NOTE: Descriptors are local unless otherwise noted.
//===========================================================================
// Functions required by the IncidenceGraph concept
template < typename G >
std::pair< typename graph_traits< G >::out_edge_iterator,
typename graph_traits< G >::out_edge_iterator >
out_edges(
typename graph_traits< G >::vertex_descriptor v, const subgraph< G >& g)
{
return out_edges(v, g.m_graph);
}
template < typename G >
typename graph_traits< G >::degree_size_type out_degree(
typename graph_traits< G >::vertex_descriptor v, const subgraph< G >& g)
{
return out_degree(v, g.m_graph);
}
template < typename G >
typename graph_traits< G >::vertex_descriptor source(
typename graph_traits< G >::edge_descriptor e, const subgraph< G >& g)
{
return source(e, g.m_graph);
}
template < typename G >
typename graph_traits< G >::vertex_descriptor target(
typename graph_traits< G >::edge_descriptor e, const subgraph< G >& g)
{
return target(e, g.m_graph);
}
//===========================================================================
// Functions required by the BidirectionalGraph concept
template < typename G >
std::pair< typename graph_traits< G >::in_edge_iterator,
typename graph_traits< G >::in_edge_iterator >
in_edges(
typename graph_traits< G >::vertex_descriptor v, const subgraph< G >& g)
{
return in_edges(v, g.m_graph);
}
template < typename G >
typename graph_traits< G >::degree_size_type in_degree(
typename graph_traits< G >::vertex_descriptor v, const subgraph< G >& g)
{
return in_degree(v, g.m_graph);
}
template < typename G >
typename graph_traits< G >::degree_size_type degree(
typename graph_traits< G >::vertex_descriptor v, const subgraph< G >& g)
{
return degree(v, g.m_graph);
}
//===========================================================================
// Functions required by the AdjacencyGraph concept
template < typename G >
std::pair< typename subgraph< G >::adjacency_iterator,
typename subgraph< G >::adjacency_iterator >
adjacent_vertices(
typename subgraph< G >::vertex_descriptor v, const subgraph< G >& g)
{
return adjacent_vertices(v, g.m_graph);
}
//===========================================================================
// Functions required by the VertexListGraph concept
template < typename G >
std::pair< typename subgraph< G >::vertex_iterator,
typename subgraph< G >::vertex_iterator >
vertices(const subgraph< G >& g)
{
return vertices(g.m_graph);
}
template < typename G >
typename subgraph< G >::vertices_size_type num_vertices(const subgraph< G >& g)
{
return num_vertices(g.m_graph);
}
//===========================================================================
// Functions required by the EdgeListGraph concept
template < typename G >
std::pair< typename subgraph< G >::edge_iterator,
typename subgraph< G >::edge_iterator >
edges(const subgraph< G >& g)
{
return edges(g.m_graph);
}
template < typename G >
typename subgraph< G >::edges_size_type num_edges(const subgraph< G >& g)
{
return num_edges(g.m_graph);
}
//===========================================================================
// Functions required by the AdjacencyMatrix concept
template < typename G >
std::pair< typename subgraph< G >::edge_descriptor, bool > edge(
typename subgraph< G >::vertex_descriptor u,
typename subgraph< G >::vertex_descriptor v, const subgraph< G >& g)
{
return edge(u, v, g.m_graph);
}
//===========================================================================
// Functions required by the MutableGraph concept
namespace detail
{
template < typename Vertex, typename Edge, typename Graph >
void add_edge_recur_down(
Vertex u_global, Vertex v_global, Edge e_global, subgraph< Graph >& g);
template < typename Vertex, typename Edge, typename Children, typename G >
void children_add_edge(Vertex u_global, Vertex v_global, Edge e_global,
Children& c, subgraph< G >* orig)
{
for (typename Children::iterator i = c.begin(); i != c.end(); ++i)
{
if ((*i)->find_vertex(u_global).second
&& (*i)->find_vertex(v_global).second)
{
add_edge_recur_down(u_global, v_global, e_global, **i, orig);
}
}
}
template < typename Vertex, typename Edge, typename Graph >
void add_edge_recur_down(Vertex u_global, Vertex v_global, Edge e_global,
subgraph< Graph >& g, subgraph< Graph >* orig)
{
if (&g != orig)
{
// add local edge only if u_global and v_global are in subgraph g
Vertex u_local, v_local;
bool u_in_subgraph, v_in_subgraph;
boost::tie(u_local, u_in_subgraph) = g.find_vertex(u_global);
boost::tie(v_local, v_in_subgraph) = g.find_vertex(v_global);
if (u_in_subgraph && v_in_subgraph)
{
g.local_add_edge(u_local, v_local, e_global);
}
}
children_add_edge(u_global, v_global, e_global, g.m_children, orig);
}
template < typename Vertex, typename Graph >
std::pair< typename subgraph< Graph >::edge_descriptor, bool >
add_edge_recur_up(Vertex u_global, Vertex v_global,
const typename Graph::edge_property_type& ep, subgraph< Graph >& g,
subgraph< Graph >* orig)
{
if (g.is_root())
{
typename subgraph< Graph >::edge_descriptor e_global;
bool inserted;
boost::tie(e_global, inserted)
= add_edge(u_global, v_global, ep, g.m_graph);
put(edge_index, g.m_graph, e_global, g.m_edge_counter++);
g.m_global_edge.push_back(e_global);
children_add_edge(u_global, v_global, e_global, g.m_children, orig);
return std::make_pair(e_global, inserted);
}
else
{
return add_edge_recur_up(u_global, v_global, ep, *g.m_parent, orig);
}
}
} // namespace detail
// Add an edge to the subgraph g, specified by the local vertex descriptors u
// and v. In addition, the edge will be added to any (all) other subgraphs that
// contain vertex descriptors u and v.
template < typename G >
std::pair< typename subgraph< G >::edge_descriptor, bool > add_edge(
typename subgraph< G >::vertex_descriptor u,
typename subgraph< G >::vertex_descriptor v,
const typename G::edge_property_type& ep, subgraph< G >& g)
{
if (g.is_root())
{
// u and v are really global
return detail::add_edge_recur_up(u, v, ep, g, &g);
}
else
{
typename subgraph< G >::edge_descriptor e_local, e_global;
bool inserted;
boost::tie(e_global, inserted) = detail::add_edge_recur_up(
g.local_to_global(u), g.local_to_global(v), ep, g, &g);
e_local = g.local_add_edge(u, v, e_global);
return std::make_pair(e_local, inserted);
}
}
template < typename G >
std::pair< typename subgraph< G >::edge_descriptor, bool > add_edge(
typename subgraph< G >::vertex_descriptor u,
typename subgraph< G >::vertex_descriptor v, subgraph< G >& g)
{
return add_edge(u, v, typename G::edge_property_type(), g);
}
namespace detail
{
//-------------------------------------------------------------------------
// implementation of remove_edge(u,v,g)
template < typename Vertex, typename Graph >
void remove_edge_recur_down(
Vertex u_global, Vertex v_global, subgraph< Graph >& g);
template < typename Vertex, typename Children >
void children_remove_edge(Vertex u_global, Vertex v_global, Children& c)
{
for (typename Children::iterator i = c.begin(); i != c.end(); ++i)
{
if ((*i)->find_vertex(u_global).second
&& (*i)->find_vertex(v_global).second)
{
remove_edge_recur_down(u_global, v_global, **i);
}
}
}
template < typename Vertex, typename Graph >
void remove_edge_recur_down(
Vertex u_global, Vertex v_global, subgraph< Graph >& g)
{
Vertex u_local, v_local;
u_local = g.m_local_vertex[u_global];
v_local = g.m_local_vertex[v_global];
remove_edge(u_local, v_local, g.m_graph);
children_remove_edge(u_global, v_global, g.m_children);
}
template < typename Vertex, typename Graph >
void remove_edge_recur_up(
Vertex u_global, Vertex v_global, subgraph< Graph >& g)
{
if (g.is_root())
{
remove_edge(u_global, v_global, g.m_graph);
children_remove_edge(u_global, v_global, g.m_children);
}
else
{
remove_edge_recur_up(u_global, v_global, *g.m_parent);
}
}
//-------------------------------------------------------------------------
// implementation of remove_edge(e,g)
template < typename G, typename Edge, typename Children >
void children_remove_edge(Edge e_global, Children& c)
{
for (typename Children::iterator i = c.begin(); i != c.end(); ++i)
{
std::pair< typename subgraph< G >::edge_descriptor, bool > found
= (*i)->find_edge(e_global);
if (!found.second)
{
continue;
}
children_remove_edge< G >(e_global, (*i)->m_children);
remove_edge(found.first, (*i)->m_graph);
}
}
} // namespace detail
template < typename G >
void remove_edge(typename subgraph< G >::vertex_descriptor u,
typename subgraph< G >::vertex_descriptor v, subgraph< G >& g)
{
if (g.is_root())
{
detail::remove_edge_recur_up(u, v, g);
}
else
{
detail::remove_edge_recur_up(
g.local_to_global(u), g.local_to_global(v), g);
}
}
template < typename G >
void remove_edge(typename subgraph< G >::edge_descriptor e, subgraph< G >& g)
{
typename subgraph< G >::edge_descriptor e_global = g.local_to_global(e);
#ifndef NDEBUG
std::pair< typename subgraph< G >::edge_descriptor, bool > fe
= g.find_edge(e_global);
BOOST_ASSERT(fe.second && fe.first == e);
#endif // NDEBUG
subgraph< G >& root = g.root(); // chase to root
detail::children_remove_edge< G >(e_global, root.m_children);
remove_edge(e_global, root.m_graph); // kick edge from root
}
// This is slow, but there may not be a good way to do it safely otherwise
template < typename Predicate, typename G >
void remove_edge_if(Predicate p, subgraph< G >& g)
{
while (true)
{
bool any_removed = false;
typedef typename subgraph< G >::edge_iterator ei_type;
for (std::pair< ei_type, ei_type > ep = edges(g); ep.first != ep.second;
++ep.first)
{
if (p(*ep.first))
{
any_removed = true;
remove_edge(*ep.first, g);
break; /* Since iterators may be invalidated */
}
}
if (!any_removed)
break;
}
}
template < typename G >
void clear_vertex(typename subgraph< G >::vertex_descriptor v, subgraph< G >& g)
{
while (true)
{
typedef typename subgraph< G >::out_edge_iterator oei_type;
std::pair< oei_type, oei_type > p = out_edges(v, g);
if (p.first == p.second)
break;
remove_edge(*p.first, g);
}
}
namespace detail
{
template < typename G >
typename subgraph< G >::vertex_descriptor add_vertex_recur_up(
subgraph< G >& g)
{
typename subgraph< G >::vertex_descriptor u_local, u_global;
if (g.is_root())
{
u_global = add_vertex(g.m_graph);
g.m_global_vertex.push_back(u_global);
}
else
{
u_global = add_vertex_recur_up(*g.m_parent);
u_local = add_vertex(g.m_graph);
g.m_global_vertex.push_back(u_global);
g.m_local_vertex[u_global] = u_local;
}
return u_global;
}
} // namespace detail
template < typename G >
typename subgraph< G >::vertex_descriptor add_vertex(subgraph< G >& g)
{
typename subgraph< G >::vertex_descriptor u_local, u_global;
if (g.is_root())
{
u_global = add_vertex(g.m_graph);
g.m_global_vertex.push_back(u_global);
u_local = u_global;
}
else
{
u_global = detail::add_vertex_recur_up(g.parent());
u_local = add_vertex(g.m_graph);
g.m_global_vertex.push_back(u_global);
g.m_local_vertex[u_global] = u_local;
}
return u_local;
}
#if 0
// TODO: Under Construction
template <typename G>
void remove_vertex(typename subgraph<G>::vertex_descriptor u, subgraph<G>& g)
{ BOOST_ASSERT(false); }
#endif
//===========================================================================
// Functions required by the PropertyGraph concept
/**
* The global property map returns the global properties associated with local
* descriptors.
*/
template < typename GraphPtr, typename PropertyMap, typename Tag >
class subgraph_global_property_map
: public put_get_helper< typename property_traits< PropertyMap >::reference,
subgraph_global_property_map< GraphPtr, PropertyMap, Tag > >
{
typedef property_traits< PropertyMap > Traits;
public:
typedef typename mpl::if_<
is_const< typename remove_pointer< GraphPtr >::type >,
readable_property_map_tag, typename Traits::category >::type category;
typedef typename Traits::value_type value_type;
typedef typename Traits::key_type key_type;
typedef typename Traits::reference reference;
subgraph_global_property_map() {}
subgraph_global_property_map(GraphPtr g, Tag tag) : m_g(g), m_tag(tag) {}
reference operator[](key_type e) const
{
PropertyMap pmap = get(m_tag, m_g->root().m_graph);
return m_g->is_root() ? pmap[e] : pmap[m_g->local_to_global(e)];
}
GraphPtr m_g;
Tag m_tag;
};
/**
* The local property map returns the local property associated with the local
* descriptors.
*/
template < typename GraphPtr, typename PropertyMap, typename Tag >
class subgraph_local_property_map
: public put_get_helper< typename property_traits< PropertyMap >::reference,
subgraph_local_property_map< GraphPtr, PropertyMap, Tag > >
{
typedef property_traits< PropertyMap > Traits;
public:
typedef typename mpl::if_<
is_const< typename remove_pointer< GraphPtr >::type >,
readable_property_map_tag, typename Traits::category >::type category;
typedef typename Traits::value_type value_type;
typedef typename Traits::key_type key_type;
typedef typename Traits::reference reference;
typedef Tag tag;
typedef PropertyMap pmap;
subgraph_local_property_map() {}
subgraph_local_property_map(GraphPtr g, Tag tag) : m_g(g), m_tag(tag) {}
reference operator[](key_type e) const
{
// Get property map on the underlying graph.
PropertyMap pmap = get(m_tag, m_g->m_graph);
return pmap[e];
}
GraphPtr m_g;
Tag m_tag;
};
namespace detail
{
// Extract the actual tags from local or global property maps so we don't
// try to find non-properties.
template < typename P > struct extract_lg_tag
{
typedef P type;
};
template < typename P > struct extract_lg_tag< local_property< P > >
{
typedef P type;
};
template < typename P > struct extract_lg_tag< global_property< P > >
{
typedef P type;
};
// NOTE: Mysterious Property template parameter unused in both metafunction
// classes.
struct subgraph_global_pmap
{
template < class Tag, class SubGraph, class Property > struct bind_
{
typedef typename SubGraph::graph_type Graph;
typedef SubGraph* SubGraphPtr;
typedef const SubGraph* const_SubGraphPtr;
typedef typename extract_lg_tag< Tag >::type TagType;
typedef typename property_map< Graph, TagType >::type PMap;
typedef
typename property_map< Graph, TagType >::const_type const_PMap;
public:
typedef subgraph_global_property_map< SubGraphPtr, PMap, TagType >
type;
typedef subgraph_global_property_map< const_SubGraphPtr, const_PMap,
TagType >
const_type;
};
};
struct subgraph_local_pmap
{
template < class Tag, class SubGraph, class Property > struct bind_
{
typedef typename SubGraph::graph_type Graph;
typedef SubGraph* SubGraphPtr;
typedef const SubGraph* const_SubGraphPtr;
typedef typename extract_lg_tag< Tag >::type TagType;
typedef typename property_map< Graph, TagType >::type PMap;
typedef
typename property_map< Graph, TagType >::const_type const_PMap;
public:
typedef subgraph_local_property_map< SubGraphPtr, PMap, TagType >
type;
typedef subgraph_local_property_map< const_SubGraphPtr, const_PMap,
TagType >
const_type;
};
};
// These metafunctions select the corresponding metafunctions above, and
// are used by the choose_pmap metafunction below to specialize the choice
// of local/global property map. By default, we defer to the global
// property.
template < class Tag > struct subgraph_choose_pmap_helper
{
typedef subgraph_global_pmap type;
};
template < class Tag >
struct subgraph_choose_pmap_helper< local_property< Tag > >
{
typedef subgraph_local_pmap type;
};
template < class Tag >
struct subgraph_choose_pmap_helper< global_property< Tag > >
{
typedef subgraph_global_pmap type;
};
// As above, unless we're requesting vertex_index_t. Then it's always a
// local property map. This enables the correct translation of descriptors
// between local and global layers.
template <> struct subgraph_choose_pmap_helper< vertex_index_t >
{
typedef subgraph_local_pmap type;
};
template <>
struct subgraph_choose_pmap_helper< local_property< vertex_index_t > >
{
typedef subgraph_local_pmap type;
};
template <>
struct subgraph_choose_pmap_helper< global_property< vertex_index_t > >
{
typedef subgraph_local_pmap type;
};
// Determine the kind of property. If SameType<Tag, vertex_index_t>, then
// the property lookup is always local. Otherwise, the lookup is global.
// NOTE: Property parameter is basically unused.
template < class Tag, class Graph, class Property >
struct subgraph_choose_pmap
{
typedef typename subgraph_choose_pmap_helper< Tag >::type Helper;
typedef typename Helper::template bind_< Tag, Graph, Property > Bind;
typedef typename Bind::type type;
typedef typename Bind::const_type const_type;
};
// Used by the vertex/edge property selectors to determine the kind(s) of
// property maps used by the property_map type generator.
struct subgraph_property_generator
{
template < class SubGraph, class Property, class Tag > struct bind_
{
typedef subgraph_choose_pmap< Tag, SubGraph, Property > Choice;
typedef typename Choice::type type;
typedef typename Choice::const_type const_type;
};
};
} // namespace detail
template <> struct vertex_property_selector< subgraph_tag >
{
typedef detail::subgraph_property_generator type;
};
template <> struct edge_property_selector< subgraph_tag >
{
typedef detail::subgraph_property_generator type;
};
// ==================================================
// get(p, g), get(p, g, k), and put(p, g, k, v)
// ==================================================
template < typename G, typename Property >
typename property_map< subgraph< G >, Property >::type get(
Property p, subgraph< G >& g)
{
typedef typename property_map< subgraph< G >, Property >::type PMap;
return PMap(&g, p);
}
template < typename G, typename Property >
typename property_map< subgraph< G >, Property >::const_type get(
Property p, const subgraph< G >& g)
{
typedef typename property_map< subgraph< G >, Property >::const_type PMap;
return PMap(&g, p);
}
template < typename G, typename Property, typename Key >
typename property_traits<
typename property_map< subgraph< G >, Property >::const_type >::value_type
get(Property p, const subgraph< G >& g, const Key& k)
{
typedef typename property_map< subgraph< G >, Property >::const_type PMap;
PMap pmap(&g, p);
return pmap[k];
}
template < typename G, typename Property, typename Key, typename Value >
void put(Property p, subgraph< G >& g, const Key& k, const Value& val)
{
typedef typename property_map< subgraph< G >, Property >::type PMap;
PMap pmap(&g, p);
pmap[k] = val;
}
// ==================================================
// get(global(p), g)
// NOTE: get(global(p), g, k) and put(global(p), g, k, v) not supported
// ==================================================
template < typename G, typename Property >
typename property_map< subgraph< G >, global_property< Property > >::type get(
global_property< Property > p, subgraph< G >& g)
{
typedef typename property_map< subgraph< G >,
global_property< Property > >::type Map;
return Map(&g, p.value);
}
template < typename G, typename Property >
typename property_map< subgraph< G >, global_property< Property > >::const_type
get(global_property< Property > p, const subgraph< G >& g)
{
typedef typename property_map< subgraph< G >,
global_property< Property > >::const_type Map;
return Map(&g, p.value);
}
// ==================================================
// get(local(p), g)
// NOTE: get(local(p), g, k) and put(local(p), g, k, v) not supported
// ==================================================
template < typename G, typename Property >
typename property_map< subgraph< G >, local_property< Property > >::type get(
local_property< Property > p, subgraph< G >& g)
{
typedef
typename property_map< subgraph< G >, local_property< Property > >::type
Map;
return Map(&g, p.value);
}
template < typename G, typename Property >
typename property_map< subgraph< G >, local_property< Property > >::const_type
get(local_property< Property > p, const subgraph< G >& g)
{
typedef typename property_map< subgraph< G >,
local_property< Property > >::const_type Map;
return Map(&g, p.value);
}
template < typename G, typename Tag >
inline typename graph_property< G, Tag >::type& get_property(
subgraph< G >& g, Tag tag)
{
return get_property(g.m_graph, tag);
}
template < typename G, typename Tag >
inline const typename graph_property< G, Tag >::type& get_property(
const subgraph< G >& g, Tag tag)
{
return get_property(g.m_graph, tag);
}
//===========================================================================
// Miscellaneous Functions
template < typename G >
typename subgraph< G >::vertex_descriptor vertex(
typename subgraph< G >::vertices_size_type n, const subgraph< G >& g)
{
return vertex(n, g.m_graph);
}
//===========================================================================
// Mutability Traits
// Just pull the mutability traits form the underlying graph. Note that this
// will probably fail (badly) for labeled graphs.
template < typename G > struct graph_mutability_traits< subgraph< G > >
{
typedef typename graph_mutability_traits< G >::category category;
};
} // namespace boost
#endif // BOOST_SUBGRAPH_HPP